How can I perform a value dependent pivot table/Groupby in Pandas? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) The Ask Question Wizard is Live! Data science time! April 2019 and salary with experienceHow can I safely create a nested directory in Python?How can I make a time delay in Python?How do I sort a dictionary by value?How to access environment variable values?Converting a Pandas GroupBy object to DataFrameAdding new column to existing DataFrame in Python pandasHow to access pandas groupby dataframe by keyHow to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandasHow to pivot a dataframe

What was the last x86 CPU that did not have the x87 floating-point unit built in?

How to delete random line from file using Unix command?

What do you call a plan that's an alternative plan in case your initial plan fails?

Cooking pasta in a water boiler

How long does the line of fire that you can create as an action using the Investiture of Flame spell last?

Reference for the teaching of not-self

What are these Gizmos at Izaña Atmospheric Research Center in Spain?

What's the point in a preamp?

Derivation tree not rendering

What aspect of planet Earth must be changed to prevent the industrial revolution?

Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?

How to copy the contents of all files with a certain name into a new file?

Did the new image of black hole confirm the general theory of relativity?

Was credit for the black hole image misattributed?

Can a novice safely splice in wire to lengthen 5V charging cable?

Why did all the guest students take carriages to the Yule Ball?

Windows 10: How to Lock (not sleep) laptop on lid close?

How do you keep chess fun when your opponent constantly beats you?

Sort a list of pairs representing an acyclic, partial automorphism

How should I replace vector<uint8_t>::const_iterator in an API?

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

Mortgage adviser recommends a longer term than necessary combined with overpayments

Does Parliament hold absolute power in the UK?

Difference between "generating set" and free product?



How can I perform a value dependent pivot table/Groupby in Pandas?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
The Ask Question Wizard is Live!
Data science time! April 2019 and salary with experienceHow can I safely create a nested directory in Python?How can I make a time delay in Python?How do I sort a dictionary by value?How to access environment variable values?Converting a Pandas GroupBy object to DataFrameAdding new column to existing DataFrame in Python pandasHow to access pandas groupby dataframe by keyHow to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandasHow to pivot a dataframe



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








1















I have the following dataframe:



 Tran ID Category Quantity 
0 001 A 5
1 001 B 2
2 001 C 3
3 002 A 4
4 002 C 2
5 003 D 6


I want to transform it into:



 Tran ID A B C D Quantity 
0 001 True True True False 10
1 002 True False True False 6
2 003 False False False True 6


I know I can use groupby to get the sum of quantity, but I can't figure out how to perform the pivot that I described.










share|improve this question






























    1















    I have the following dataframe:



     Tran ID Category Quantity 
    0 001 A 5
    1 001 B 2
    2 001 C 3
    3 002 A 4
    4 002 C 2
    5 003 D 6


    I want to transform it into:



     Tran ID A B C D Quantity 
    0 001 True True True False 10
    1 002 True False True False 6
    2 003 False False False True 6


    I know I can use groupby to get the sum of quantity, but I can't figure out how to perform the pivot that I described.










    share|improve this question


























      1












      1








      1


      1






      I have the following dataframe:



       Tran ID Category Quantity 
      0 001 A 5
      1 001 B 2
      2 001 C 3
      3 002 A 4
      4 002 C 2
      5 003 D 6


      I want to transform it into:



       Tran ID A B C D Quantity 
      0 001 True True True False 10
      1 002 True False True False 6
      2 003 False False False True 6


      I know I can use groupby to get the sum of quantity, but I can't figure out how to perform the pivot that I described.










      share|improve this question
















      I have the following dataframe:



       Tran ID Category Quantity 
      0 001 A 5
      1 001 B 2
      2 001 C 3
      3 002 A 4
      4 002 C 2
      5 003 D 6


      I want to transform it into:



       Tran ID A B C D Quantity 
      0 001 True True True False 10
      1 002 True False True False 6
      2 003 False False False True 6


      I know I can use groupby to get the sum of quantity, but I can't figure out how to perform the pivot that I described.







      python pandas pandas-groupby






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 22 at 7:54









      U9-Forward

      18.1k51744




      18.1k51744










      asked Mar 22 at 6:48









      Alex KinmanAlex Kinman

      74321228




      74321228






















          2 Answers
          2






          active

          oldest

          votes


















          2














          Use get_dummies for indicators with max and add new column with aggregating sum:



          #pandas 0.23+
          df1 = pd.get_dummies(df.set_index('Tran ID')['Category'], dtype=bool).max(level=0)
          #oldier pandas versions
          #df1 = pd.get_dummies(df.set_index('Tran ID')['Category']).astype(bool).max(level=0)
          s = df.groupby('Tran ID')['Quantity'].sum()

          df2 = df1.assign(Quantity = s).reset_index()
          print (df2)
          Tran ID A B C D Quantity
          0 001 True True True False 10
          1 002 True False True False 6
          2 003 False False False True 6





          share|improve this answer
































            2














            Or you can use:



            print(df.drop('Category',1).join(df['Category'].str.get_dummies().astype(bool)).groupby('Tran ID',as_index=False).sum())


            Or little easier to read:



            df1 = df.drop('Category',1).join(df['Category'].str.get_dummies().astype(bool))
            print(df1.groupby('Tran ID',as_index=False).sum())


            Both output:



             Tran ID Quantity A B C D
            0 1 10 True True True False
            1 2 6 True False True False
            2 3 6 False False False True


            pandas.DataFrame.groupby with pandas.Series.str.get_dummies is the way to do it.






            share|improve this answer




















            • 1





              I think you're missing a parenthesis at the end

              – Alex Kinman
              Mar 22 at 7:05











            • Solution working with sample data, but if change second row to 1;001;A;2 it working uncorrect.Reason is aggregating sum

              – jezrael
              Mar 22 at 7:05











            • @jezrael I am gonna try.

              – U9-Forward
              Mar 22 at 7:20











            • @jezrael it works for me with those values...

              – U9-Forward
              Mar 22 at 7:23






            • 1





              @U9-Forward - Really old, upgrade it... :)

              – jezrael
              Mar 22 at 7:27











            Your Answer






            StackExchange.ifUsing("editor", function ()
            StackExchange.using("externalEditor", function ()
            StackExchange.using("snippets", function ()
            StackExchange.snippets.init();
            );
            );
            , "code-snippets");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "1"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55294266%2fhow-can-i-perform-a-value-dependent-pivot-table-groupby-in-pandas%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            Use get_dummies for indicators with max and add new column with aggregating sum:



            #pandas 0.23+
            df1 = pd.get_dummies(df.set_index('Tran ID')['Category'], dtype=bool).max(level=0)
            #oldier pandas versions
            #df1 = pd.get_dummies(df.set_index('Tran ID')['Category']).astype(bool).max(level=0)
            s = df.groupby('Tran ID')['Quantity'].sum()

            df2 = df1.assign(Quantity = s).reset_index()
            print (df2)
            Tran ID A B C D Quantity
            0 001 True True True False 10
            1 002 True False True False 6
            2 003 False False False True 6





            share|improve this answer





























              2














              Use get_dummies for indicators with max and add new column with aggregating sum:



              #pandas 0.23+
              df1 = pd.get_dummies(df.set_index('Tran ID')['Category'], dtype=bool).max(level=0)
              #oldier pandas versions
              #df1 = pd.get_dummies(df.set_index('Tran ID')['Category']).astype(bool).max(level=0)
              s = df.groupby('Tran ID')['Quantity'].sum()

              df2 = df1.assign(Quantity = s).reset_index()
              print (df2)
              Tran ID A B C D Quantity
              0 001 True True True False 10
              1 002 True False True False 6
              2 003 False False False True 6





              share|improve this answer



























                2












                2








                2







                Use get_dummies for indicators with max and add new column with aggregating sum:



                #pandas 0.23+
                df1 = pd.get_dummies(df.set_index('Tran ID')['Category'], dtype=bool).max(level=0)
                #oldier pandas versions
                #df1 = pd.get_dummies(df.set_index('Tran ID')['Category']).astype(bool).max(level=0)
                s = df.groupby('Tran ID')['Quantity'].sum()

                df2 = df1.assign(Quantity = s).reset_index()
                print (df2)
                Tran ID A B C D Quantity
                0 001 True True True False 10
                1 002 True False True False 6
                2 003 False False False True 6





                share|improve this answer















                Use get_dummies for indicators with max and add new column with aggregating sum:



                #pandas 0.23+
                df1 = pd.get_dummies(df.set_index('Tran ID')['Category'], dtype=bool).max(level=0)
                #oldier pandas versions
                #df1 = pd.get_dummies(df.set_index('Tran ID')['Category']).astype(bool).max(level=0)
                s = df.groupby('Tran ID')['Quantity'].sum()

                df2 = df1.assign(Quantity = s).reset_index()
                print (df2)
                Tran ID A B C D Quantity
                0 001 True True True False 10
                1 002 True False True False 6
                2 003 False False False True 6






                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Mar 22 at 7:01

























                answered Mar 22 at 6:53









                jezraeljezrael

                358k26324403




                358k26324403























                    2














                    Or you can use:



                    print(df.drop('Category',1).join(df['Category'].str.get_dummies().astype(bool)).groupby('Tran ID',as_index=False).sum())


                    Or little easier to read:



                    df1 = df.drop('Category',1).join(df['Category'].str.get_dummies().astype(bool))
                    print(df1.groupby('Tran ID',as_index=False).sum())


                    Both output:



                     Tran ID Quantity A B C D
                    0 1 10 True True True False
                    1 2 6 True False True False
                    2 3 6 False False False True


                    pandas.DataFrame.groupby with pandas.Series.str.get_dummies is the way to do it.






                    share|improve this answer




















                    • 1





                      I think you're missing a parenthesis at the end

                      – Alex Kinman
                      Mar 22 at 7:05











                    • Solution working with sample data, but if change second row to 1;001;A;2 it working uncorrect.Reason is aggregating sum

                      – jezrael
                      Mar 22 at 7:05











                    • @jezrael I am gonna try.

                      – U9-Forward
                      Mar 22 at 7:20











                    • @jezrael it works for me with those values...

                      – U9-Forward
                      Mar 22 at 7:23






                    • 1





                      @U9-Forward - Really old, upgrade it... :)

                      – jezrael
                      Mar 22 at 7:27















                    2














                    Or you can use:



                    print(df.drop('Category',1).join(df['Category'].str.get_dummies().astype(bool)).groupby('Tran ID',as_index=False).sum())


                    Or little easier to read:



                    df1 = df.drop('Category',1).join(df['Category'].str.get_dummies().astype(bool))
                    print(df1.groupby('Tran ID',as_index=False).sum())


                    Both output:



                     Tran ID Quantity A B C D
                    0 1 10 True True True False
                    1 2 6 True False True False
                    2 3 6 False False False True


                    pandas.DataFrame.groupby with pandas.Series.str.get_dummies is the way to do it.






                    share|improve this answer




















                    • 1





                      I think you're missing a parenthesis at the end

                      – Alex Kinman
                      Mar 22 at 7:05











                    • Solution working with sample data, but if change second row to 1;001;A;2 it working uncorrect.Reason is aggregating sum

                      – jezrael
                      Mar 22 at 7:05











                    • @jezrael I am gonna try.

                      – U9-Forward
                      Mar 22 at 7:20











                    • @jezrael it works for me with those values...

                      – U9-Forward
                      Mar 22 at 7:23






                    • 1





                      @U9-Forward - Really old, upgrade it... :)

                      – jezrael
                      Mar 22 at 7:27













                    2












                    2








                    2







                    Or you can use:



                    print(df.drop('Category',1).join(df['Category'].str.get_dummies().astype(bool)).groupby('Tran ID',as_index=False).sum())


                    Or little easier to read:



                    df1 = df.drop('Category',1).join(df['Category'].str.get_dummies().astype(bool))
                    print(df1.groupby('Tran ID',as_index=False).sum())


                    Both output:



                     Tran ID Quantity A B C D
                    0 1 10 True True True False
                    1 2 6 True False True False
                    2 3 6 False False False True


                    pandas.DataFrame.groupby with pandas.Series.str.get_dummies is the way to do it.






                    share|improve this answer















                    Or you can use:



                    print(df.drop('Category',1).join(df['Category'].str.get_dummies().astype(bool)).groupby('Tran ID',as_index=False).sum())


                    Or little easier to read:



                    df1 = df.drop('Category',1).join(df['Category'].str.get_dummies().astype(bool))
                    print(df1.groupby('Tran ID',as_index=False).sum())


                    Both output:



                     Tran ID Quantity A B C D
                    0 1 10 True True True False
                    1 2 6 True False True False
                    2 3 6 False False False True


                    pandas.DataFrame.groupby with pandas.Series.str.get_dummies is the way to do it.







                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited Mar 22 at 7:17

























                    answered Mar 22 at 6:54









                    U9-ForwardU9-Forward

                    18.1k51744




                    18.1k51744







                    • 1





                      I think you're missing a parenthesis at the end

                      – Alex Kinman
                      Mar 22 at 7:05











                    • Solution working with sample data, but if change second row to 1;001;A;2 it working uncorrect.Reason is aggregating sum

                      – jezrael
                      Mar 22 at 7:05











                    • @jezrael I am gonna try.

                      – U9-Forward
                      Mar 22 at 7:20











                    • @jezrael it works for me with those values...

                      – U9-Forward
                      Mar 22 at 7:23






                    • 1





                      @U9-Forward - Really old, upgrade it... :)

                      – jezrael
                      Mar 22 at 7:27












                    • 1





                      I think you're missing a parenthesis at the end

                      – Alex Kinman
                      Mar 22 at 7:05











                    • Solution working with sample data, but if change second row to 1;001;A;2 it working uncorrect.Reason is aggregating sum

                      – jezrael
                      Mar 22 at 7:05











                    • @jezrael I am gonna try.

                      – U9-Forward
                      Mar 22 at 7:20











                    • @jezrael it works for me with those values...

                      – U9-Forward
                      Mar 22 at 7:23






                    • 1





                      @U9-Forward - Really old, upgrade it... :)

                      – jezrael
                      Mar 22 at 7:27







                    1




                    1





                    I think you're missing a parenthesis at the end

                    – Alex Kinman
                    Mar 22 at 7:05





                    I think you're missing a parenthesis at the end

                    – Alex Kinman
                    Mar 22 at 7:05













                    Solution working with sample data, but if change second row to 1;001;A;2 it working uncorrect.Reason is aggregating sum

                    – jezrael
                    Mar 22 at 7:05





                    Solution working with sample data, but if change second row to 1;001;A;2 it working uncorrect.Reason is aggregating sum

                    – jezrael
                    Mar 22 at 7:05













                    @jezrael I am gonna try.

                    – U9-Forward
                    Mar 22 at 7:20





                    @jezrael I am gonna try.

                    – U9-Forward
                    Mar 22 at 7:20













                    @jezrael it works for me with those values...

                    – U9-Forward
                    Mar 22 at 7:23





                    @jezrael it works for me with those values...

                    – U9-Forward
                    Mar 22 at 7:23




                    1




                    1





                    @U9-Forward - Really old, upgrade it... :)

                    – jezrael
                    Mar 22 at 7:27





                    @U9-Forward - Really old, upgrade it... :)

                    – jezrael
                    Mar 22 at 7:27

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55294266%2fhow-can-i-perform-a-value-dependent-pivot-table-groupby-in-pandas%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

                    SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

                    은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현