How to implement upsampling with mask(index) in tf.kerasHow to merge two dictionaries in a single expression?How do I check if a list is empty?How do I check whether a file exists without exceptions?Finding the index of an item given a list containing it in PythonHow can I safely create a nested directory in Python?Accessing the index in 'for' loops?How do I sort a dictionary by value?How do I list all files of a directory?AveragePooling2D doesn't recognize a dtypeProblems with dimensions when fitting image in resnet model

Escape a backup date in a file name

How to Reset Passwords on Multiple Websites Easily?

How easy is it to start Magic from scratch?

Purchasing a ticket for someone else in another country?

For a non-Jew, is there a punishment for not observing the 7 Noahide Laws?

Avoiding estate tax by giving multiple gifts

Anatomically Correct Strange Women In Ponds Distributing Swords

Would a high gravity rocky planet be guaranteed to have an atmosphere?

Is exact Kanji stroke length important?

Type int? vs type int

Is `x >> pure y` equivalent to `liftM (const y) x`

Trouble understanding the speech of overseas colleagues

Why not increase contact surface when reentering the atmosphere?

Large drywall patch supports

Fine Tuning of the Universe

How to safely derail a train during transit?

How long to clear the 'suck zone' of a turbofan after start is initiated?

Is the destination of a commercial flight important for the pilot?

What is the opposite of 'gravitas'?

How can we prove that any integral in the set of non-elementary integrals cannot be expressed in the form of elementary functions?

How does buying out courses with grant money work?

Why Were Madagascar and New Zealand Discovered So Late?

Failed to fetch jessie backports repository

How did Doctor Strange see the winning outcome in Avengers: Infinity War?



How to implement upsampling with mask(index) in tf.keras


How to merge two dictionaries in a single expression?How do I check if a list is empty?How do I check whether a file exists without exceptions?Finding the index of an item given a list containing it in PythonHow can I safely create a nested directory in Python?Accessing the index in 'for' loops?How do I sort a dictionary by value?How do I list all files of a directory?AveragePooling2D doesn't recognize a dtypeProblems with dimensions when fitting image in resnet model













0















I'm trying to build a SegNet with tf.keras, but meet some problem when I use tf.keras.layers.UpSampling. I don't know how to get the mask(index) of maxpooling and use it in tf.keras.layers.UpSampling.



I have seen the code of tf.keras.layers.UpSampling in https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/python/keras/layers/convolutional.py
It seems like that there is no implement of this function.



Then I try to find some alternative method and I got an implement in
https://github.com/ykamikawa/tf-keras-SegNet/blob/master/layers.py



I try this method with a simple test but meet some problem. The code is as follow:



from tensorflow.keras.layers import Layer
import tensorflow as tf

class MaxPoolingWithArgmax2D(Layer):

def __init__(
self,
pool_size=(2, 2),
strides=(2, 2),
padding='same',
**kwargs):
super(MaxPoolingWithArgmax2D, self).__init__(**kwargs)
self.padding = padding
self.pool_size = pool_size
self.strides = strides

def call(self, inputs, **kwargs):
padding = self.padding
pool_size = self.pool_size
strides = self.strides
ksize = [1, pool_size[0], pool_size[1], 1]
padding = padding.upper()
strides = [1, strides[0], strides[1], 1]
output, argmax = tf.nn.max_pool_with_argmax(
inputs,
ksize=ksize,
strides=strides,
padding=padding)
argmax = tf.cast(argmax, tf.float32)
return [output, argmax]

def compute_output_shape(self, input_shape):
ratio = (1, 2, 2, 1)
output_shape = [
dim//ratio[idx]
if dim is not None else None
for idx, dim in enumerate(input_shape)]
output_shape = tuple(output_shape)
return [output_shape, output_shape]

def compute_mask(self, inputs, mask=None):
return 2 * [None]


class MaxUnpooling2D(Layer):
def __init__(self, size=(2, 2), **kwargs):
super(MaxUnpooling2D, self).__init__(**kwargs)
self.size = size

def call(self, inputs, output_shape=None):
updates, mask = inputs[0], inputs[1]
with tf.variable_scope(self.name):
mask = tf.cast(mask, tf.int32)
# input_shape = tf.shape(updates, out_type='int32')
input_shape = updates.shape
# calculation new shape
if output_shape is None:
output_shape = (
input_shape[0],
input_shape[1]*self.size[0],
input_shape[2]*self.size[1],
input_shape[3])
self.output_shape1 = output_shape

# calculation indices for batch, height, width and feature maps
one_like_mask = tf.ones_like(mask, dtype='int32')
batch_shape = tf.concat(
[[input_shape[0]], [1], [1], [1]],
axis=0)
batch_range = tf.reshape(
tf.range(output_shape[0], dtype='int32'),
shape=batch_shape)
b = one_like_mask * batch_range
y = (mask // (output_shape[2] * output_shape[3]))
x = (mask // output_shape[3]) % output_shape[2]
feature_range = tf.range(output_shape[3], dtype='int32')
f = one_like_mask * feature_range

# transpose indices & reshape update values to one dimension
updates_size = tf.size(updates)
indices = tf.transpose(tf.reshape(
tf.stack([b, y, x, f]),
[4, updates_size]))
values = tf.reshape(updates, [updates_size])
ret = tf.scatter_nd(indices, values, output_shape)
return ret

def compute_output_shape(self, input_shape):
mask_shape = input_shape[1]
return (
mask_shape[0],
mask_shape[1]*self.size[0],
mask_shape[2]*self.size[1],
mask_shape[3]
)


def segmet(channels_in,channels_out):
inputs = tf.keras.layers.Input(shape=(None,None,channels_in))

outputs,mask = MaxPoolingWithArgmax2D()(inputs)
outputs = MaxUnpooling2D()([outputs,mask])

model = tf.keras.models.Model(inputs,outputs,name='segnet')
return model

if __name__ is '__main__':
model = segmet(3,6)


I meet an error as follow:




Traceback (most recent call last):



File "", line 1, in
runfile('C:/Users/WWW/Desktop/untitled0.py', wdir='C:/Users/WWW/Desktop')



File
"C:SoftAnaconda3libsite-packagesspyderutilssitesitecustomize.py",
line 710, in runfile
execfile(filename, namespace)



File
"C:SoftAnaconda3libsite-packagesspyderutilssitesitecustomize.py",
line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)



File "C:/Users/WWW/Desktop/untitled0.py", line 108, in
model = segmet(3,6)



File "C:/Users/WWW/Desktop/untitled0.py", line 102, in segmet
outputs = MaxUnpooling2D()([outputs,mask])



File
"C:SoftAnaconda3libsite-packagestensorflowpythonkerasenginebase_layer.py",
line 757, in call
outputs = self.call(inputs, *args, **kwargs)



File "C:/Users/WWW/Desktop/untitled0.py", line 69, in call
axis=0)



File
"C:SoftAnaconda3libsite-packagestensorflowpythonopsarray_ops.py",
line 1124, in concat
return gen_array_ops.concat_v2(values=values, axis=axis, name=name)



File
"C:SoftAnaconda3libsite-packagestensorflowpythonopsgen_array_ops.py",
line 1202, in concat_v2
"ConcatV2", values=values, axis=axis, name=name)



File
"C:SoftAnaconda3libsite-packagestensorflowpythonframeworkop_def_library.py",
line 483, in _apply_op_helper
raise TypeError("%s that don't all match." % prefix)



TypeError: Tensors in list passed to 'values' of 'ConcatV2' Op have
types [, int32, int32, int32] that don't
all match.




Because the input in tf.keras model have no fixed size. So, the output_shape in the code above is [None, None, None, 3]. The function like tf.concat and tf.reshape cannot process 'None'. Then, tensorflow gives an error. I know why error happened, but I don't know how to fixed it.



Can anyone help me? Thanks.










share|improve this question









New contributor




Wenchao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    0















    I'm trying to build a SegNet with tf.keras, but meet some problem when I use tf.keras.layers.UpSampling. I don't know how to get the mask(index) of maxpooling and use it in tf.keras.layers.UpSampling.



    I have seen the code of tf.keras.layers.UpSampling in https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/python/keras/layers/convolutional.py
    It seems like that there is no implement of this function.



    Then I try to find some alternative method and I got an implement in
    https://github.com/ykamikawa/tf-keras-SegNet/blob/master/layers.py



    I try this method with a simple test but meet some problem. The code is as follow:



    from tensorflow.keras.layers import Layer
    import tensorflow as tf

    class MaxPoolingWithArgmax2D(Layer):

    def __init__(
    self,
    pool_size=(2, 2),
    strides=(2, 2),
    padding='same',
    **kwargs):
    super(MaxPoolingWithArgmax2D, self).__init__(**kwargs)
    self.padding = padding
    self.pool_size = pool_size
    self.strides = strides

    def call(self, inputs, **kwargs):
    padding = self.padding
    pool_size = self.pool_size
    strides = self.strides
    ksize = [1, pool_size[0], pool_size[1], 1]
    padding = padding.upper()
    strides = [1, strides[0], strides[1], 1]
    output, argmax = tf.nn.max_pool_with_argmax(
    inputs,
    ksize=ksize,
    strides=strides,
    padding=padding)
    argmax = tf.cast(argmax, tf.float32)
    return [output, argmax]

    def compute_output_shape(self, input_shape):
    ratio = (1, 2, 2, 1)
    output_shape = [
    dim//ratio[idx]
    if dim is not None else None
    for idx, dim in enumerate(input_shape)]
    output_shape = tuple(output_shape)
    return [output_shape, output_shape]

    def compute_mask(self, inputs, mask=None):
    return 2 * [None]


    class MaxUnpooling2D(Layer):
    def __init__(self, size=(2, 2), **kwargs):
    super(MaxUnpooling2D, self).__init__(**kwargs)
    self.size = size

    def call(self, inputs, output_shape=None):
    updates, mask = inputs[0], inputs[1]
    with tf.variable_scope(self.name):
    mask = tf.cast(mask, tf.int32)
    # input_shape = tf.shape(updates, out_type='int32')
    input_shape = updates.shape
    # calculation new shape
    if output_shape is None:
    output_shape = (
    input_shape[0],
    input_shape[1]*self.size[0],
    input_shape[2]*self.size[1],
    input_shape[3])
    self.output_shape1 = output_shape

    # calculation indices for batch, height, width and feature maps
    one_like_mask = tf.ones_like(mask, dtype='int32')
    batch_shape = tf.concat(
    [[input_shape[0]], [1], [1], [1]],
    axis=0)
    batch_range = tf.reshape(
    tf.range(output_shape[0], dtype='int32'),
    shape=batch_shape)
    b = one_like_mask * batch_range
    y = (mask // (output_shape[2] * output_shape[3]))
    x = (mask // output_shape[3]) % output_shape[2]
    feature_range = tf.range(output_shape[3], dtype='int32')
    f = one_like_mask * feature_range

    # transpose indices & reshape update values to one dimension
    updates_size = tf.size(updates)
    indices = tf.transpose(tf.reshape(
    tf.stack([b, y, x, f]),
    [4, updates_size]))
    values = tf.reshape(updates, [updates_size])
    ret = tf.scatter_nd(indices, values, output_shape)
    return ret

    def compute_output_shape(self, input_shape):
    mask_shape = input_shape[1]
    return (
    mask_shape[0],
    mask_shape[1]*self.size[0],
    mask_shape[2]*self.size[1],
    mask_shape[3]
    )


    def segmet(channels_in,channels_out):
    inputs = tf.keras.layers.Input(shape=(None,None,channels_in))

    outputs,mask = MaxPoolingWithArgmax2D()(inputs)
    outputs = MaxUnpooling2D()([outputs,mask])

    model = tf.keras.models.Model(inputs,outputs,name='segnet')
    return model

    if __name__ is '__main__':
    model = segmet(3,6)


    I meet an error as follow:




    Traceback (most recent call last):



    File "", line 1, in
    runfile('C:/Users/WWW/Desktop/untitled0.py', wdir='C:/Users/WWW/Desktop')



    File
    "C:SoftAnaconda3libsite-packagesspyderutilssitesitecustomize.py",
    line 710, in runfile
    execfile(filename, namespace)



    File
    "C:SoftAnaconda3libsite-packagesspyderutilssitesitecustomize.py",
    line 101, in execfile
    exec(compile(f.read(), filename, 'exec'), namespace)



    File "C:/Users/WWW/Desktop/untitled0.py", line 108, in
    model = segmet(3,6)



    File "C:/Users/WWW/Desktop/untitled0.py", line 102, in segmet
    outputs = MaxUnpooling2D()([outputs,mask])



    File
    "C:SoftAnaconda3libsite-packagestensorflowpythonkerasenginebase_layer.py",
    line 757, in call
    outputs = self.call(inputs, *args, **kwargs)



    File "C:/Users/WWW/Desktop/untitled0.py", line 69, in call
    axis=0)



    File
    "C:SoftAnaconda3libsite-packagestensorflowpythonopsarray_ops.py",
    line 1124, in concat
    return gen_array_ops.concat_v2(values=values, axis=axis, name=name)



    File
    "C:SoftAnaconda3libsite-packagestensorflowpythonopsgen_array_ops.py",
    line 1202, in concat_v2
    "ConcatV2", values=values, axis=axis, name=name)



    File
    "C:SoftAnaconda3libsite-packagestensorflowpythonframeworkop_def_library.py",
    line 483, in _apply_op_helper
    raise TypeError("%s that don't all match." % prefix)



    TypeError: Tensors in list passed to 'values' of 'ConcatV2' Op have
    types [, int32, int32, int32] that don't
    all match.




    Because the input in tf.keras model have no fixed size. So, the output_shape in the code above is [None, None, None, 3]. The function like tf.concat and tf.reshape cannot process 'None'. Then, tensorflow gives an error. I know why error happened, but I don't know how to fixed it.



    Can anyone help me? Thanks.










    share|improve this question









    New contributor




    Wenchao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      0












      0








      0








      I'm trying to build a SegNet with tf.keras, but meet some problem when I use tf.keras.layers.UpSampling. I don't know how to get the mask(index) of maxpooling and use it in tf.keras.layers.UpSampling.



      I have seen the code of tf.keras.layers.UpSampling in https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/python/keras/layers/convolutional.py
      It seems like that there is no implement of this function.



      Then I try to find some alternative method and I got an implement in
      https://github.com/ykamikawa/tf-keras-SegNet/blob/master/layers.py



      I try this method with a simple test but meet some problem. The code is as follow:



      from tensorflow.keras.layers import Layer
      import tensorflow as tf

      class MaxPoolingWithArgmax2D(Layer):

      def __init__(
      self,
      pool_size=(2, 2),
      strides=(2, 2),
      padding='same',
      **kwargs):
      super(MaxPoolingWithArgmax2D, self).__init__(**kwargs)
      self.padding = padding
      self.pool_size = pool_size
      self.strides = strides

      def call(self, inputs, **kwargs):
      padding = self.padding
      pool_size = self.pool_size
      strides = self.strides
      ksize = [1, pool_size[0], pool_size[1], 1]
      padding = padding.upper()
      strides = [1, strides[0], strides[1], 1]
      output, argmax = tf.nn.max_pool_with_argmax(
      inputs,
      ksize=ksize,
      strides=strides,
      padding=padding)
      argmax = tf.cast(argmax, tf.float32)
      return [output, argmax]

      def compute_output_shape(self, input_shape):
      ratio = (1, 2, 2, 1)
      output_shape = [
      dim//ratio[idx]
      if dim is not None else None
      for idx, dim in enumerate(input_shape)]
      output_shape = tuple(output_shape)
      return [output_shape, output_shape]

      def compute_mask(self, inputs, mask=None):
      return 2 * [None]


      class MaxUnpooling2D(Layer):
      def __init__(self, size=(2, 2), **kwargs):
      super(MaxUnpooling2D, self).__init__(**kwargs)
      self.size = size

      def call(self, inputs, output_shape=None):
      updates, mask = inputs[0], inputs[1]
      with tf.variable_scope(self.name):
      mask = tf.cast(mask, tf.int32)
      # input_shape = tf.shape(updates, out_type='int32')
      input_shape = updates.shape
      # calculation new shape
      if output_shape is None:
      output_shape = (
      input_shape[0],
      input_shape[1]*self.size[0],
      input_shape[2]*self.size[1],
      input_shape[3])
      self.output_shape1 = output_shape

      # calculation indices for batch, height, width and feature maps
      one_like_mask = tf.ones_like(mask, dtype='int32')
      batch_shape = tf.concat(
      [[input_shape[0]], [1], [1], [1]],
      axis=0)
      batch_range = tf.reshape(
      tf.range(output_shape[0], dtype='int32'),
      shape=batch_shape)
      b = one_like_mask * batch_range
      y = (mask // (output_shape[2] * output_shape[3]))
      x = (mask // output_shape[3]) % output_shape[2]
      feature_range = tf.range(output_shape[3], dtype='int32')
      f = one_like_mask * feature_range

      # transpose indices & reshape update values to one dimension
      updates_size = tf.size(updates)
      indices = tf.transpose(tf.reshape(
      tf.stack([b, y, x, f]),
      [4, updates_size]))
      values = tf.reshape(updates, [updates_size])
      ret = tf.scatter_nd(indices, values, output_shape)
      return ret

      def compute_output_shape(self, input_shape):
      mask_shape = input_shape[1]
      return (
      mask_shape[0],
      mask_shape[1]*self.size[0],
      mask_shape[2]*self.size[1],
      mask_shape[3]
      )


      def segmet(channels_in,channels_out):
      inputs = tf.keras.layers.Input(shape=(None,None,channels_in))

      outputs,mask = MaxPoolingWithArgmax2D()(inputs)
      outputs = MaxUnpooling2D()([outputs,mask])

      model = tf.keras.models.Model(inputs,outputs,name='segnet')
      return model

      if __name__ is '__main__':
      model = segmet(3,6)


      I meet an error as follow:




      Traceback (most recent call last):



      File "", line 1, in
      runfile('C:/Users/WWW/Desktop/untitled0.py', wdir='C:/Users/WWW/Desktop')



      File
      "C:SoftAnaconda3libsite-packagesspyderutilssitesitecustomize.py",
      line 710, in runfile
      execfile(filename, namespace)



      File
      "C:SoftAnaconda3libsite-packagesspyderutilssitesitecustomize.py",
      line 101, in execfile
      exec(compile(f.read(), filename, 'exec'), namespace)



      File "C:/Users/WWW/Desktop/untitled0.py", line 108, in
      model = segmet(3,6)



      File "C:/Users/WWW/Desktop/untitled0.py", line 102, in segmet
      outputs = MaxUnpooling2D()([outputs,mask])



      File
      "C:SoftAnaconda3libsite-packagestensorflowpythonkerasenginebase_layer.py",
      line 757, in call
      outputs = self.call(inputs, *args, **kwargs)



      File "C:/Users/WWW/Desktop/untitled0.py", line 69, in call
      axis=0)



      File
      "C:SoftAnaconda3libsite-packagestensorflowpythonopsarray_ops.py",
      line 1124, in concat
      return gen_array_ops.concat_v2(values=values, axis=axis, name=name)



      File
      "C:SoftAnaconda3libsite-packagestensorflowpythonopsgen_array_ops.py",
      line 1202, in concat_v2
      "ConcatV2", values=values, axis=axis, name=name)



      File
      "C:SoftAnaconda3libsite-packagestensorflowpythonframeworkop_def_library.py",
      line 483, in _apply_op_helper
      raise TypeError("%s that don't all match." % prefix)



      TypeError: Tensors in list passed to 'values' of 'ConcatV2' Op have
      types [, int32, int32, int32] that don't
      all match.




      Because the input in tf.keras model have no fixed size. So, the output_shape in the code above is [None, None, None, 3]. The function like tf.concat and tf.reshape cannot process 'None'. Then, tensorflow gives an error. I know why error happened, but I don't know how to fixed it.



      Can anyone help me? Thanks.










      share|improve this question









      New contributor




      Wenchao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.












      I'm trying to build a SegNet with tf.keras, but meet some problem when I use tf.keras.layers.UpSampling. I don't know how to get the mask(index) of maxpooling and use it in tf.keras.layers.UpSampling.



      I have seen the code of tf.keras.layers.UpSampling in https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/python/keras/layers/convolutional.py
      It seems like that there is no implement of this function.



      Then I try to find some alternative method and I got an implement in
      https://github.com/ykamikawa/tf-keras-SegNet/blob/master/layers.py



      I try this method with a simple test but meet some problem. The code is as follow:



      from tensorflow.keras.layers import Layer
      import tensorflow as tf

      class MaxPoolingWithArgmax2D(Layer):

      def __init__(
      self,
      pool_size=(2, 2),
      strides=(2, 2),
      padding='same',
      **kwargs):
      super(MaxPoolingWithArgmax2D, self).__init__(**kwargs)
      self.padding = padding
      self.pool_size = pool_size
      self.strides = strides

      def call(self, inputs, **kwargs):
      padding = self.padding
      pool_size = self.pool_size
      strides = self.strides
      ksize = [1, pool_size[0], pool_size[1], 1]
      padding = padding.upper()
      strides = [1, strides[0], strides[1], 1]
      output, argmax = tf.nn.max_pool_with_argmax(
      inputs,
      ksize=ksize,
      strides=strides,
      padding=padding)
      argmax = tf.cast(argmax, tf.float32)
      return [output, argmax]

      def compute_output_shape(self, input_shape):
      ratio = (1, 2, 2, 1)
      output_shape = [
      dim//ratio[idx]
      if dim is not None else None
      for idx, dim in enumerate(input_shape)]
      output_shape = tuple(output_shape)
      return [output_shape, output_shape]

      def compute_mask(self, inputs, mask=None):
      return 2 * [None]


      class MaxUnpooling2D(Layer):
      def __init__(self, size=(2, 2), **kwargs):
      super(MaxUnpooling2D, self).__init__(**kwargs)
      self.size = size

      def call(self, inputs, output_shape=None):
      updates, mask = inputs[0], inputs[1]
      with tf.variable_scope(self.name):
      mask = tf.cast(mask, tf.int32)
      # input_shape = tf.shape(updates, out_type='int32')
      input_shape = updates.shape
      # calculation new shape
      if output_shape is None:
      output_shape = (
      input_shape[0],
      input_shape[1]*self.size[0],
      input_shape[2]*self.size[1],
      input_shape[3])
      self.output_shape1 = output_shape

      # calculation indices for batch, height, width and feature maps
      one_like_mask = tf.ones_like(mask, dtype='int32')
      batch_shape = tf.concat(
      [[input_shape[0]], [1], [1], [1]],
      axis=0)
      batch_range = tf.reshape(
      tf.range(output_shape[0], dtype='int32'),
      shape=batch_shape)
      b = one_like_mask * batch_range
      y = (mask // (output_shape[2] * output_shape[3]))
      x = (mask // output_shape[3]) % output_shape[2]
      feature_range = tf.range(output_shape[3], dtype='int32')
      f = one_like_mask * feature_range

      # transpose indices & reshape update values to one dimension
      updates_size = tf.size(updates)
      indices = tf.transpose(tf.reshape(
      tf.stack([b, y, x, f]),
      [4, updates_size]))
      values = tf.reshape(updates, [updates_size])
      ret = tf.scatter_nd(indices, values, output_shape)
      return ret

      def compute_output_shape(self, input_shape):
      mask_shape = input_shape[1]
      return (
      mask_shape[0],
      mask_shape[1]*self.size[0],
      mask_shape[2]*self.size[1],
      mask_shape[3]
      )


      def segmet(channels_in,channels_out):
      inputs = tf.keras.layers.Input(shape=(None,None,channels_in))

      outputs,mask = MaxPoolingWithArgmax2D()(inputs)
      outputs = MaxUnpooling2D()([outputs,mask])

      model = tf.keras.models.Model(inputs,outputs,name='segnet')
      return model

      if __name__ is '__main__':
      model = segmet(3,6)


      I meet an error as follow:




      Traceback (most recent call last):



      File "", line 1, in
      runfile('C:/Users/WWW/Desktop/untitled0.py', wdir='C:/Users/WWW/Desktop')



      File
      "C:SoftAnaconda3libsite-packagesspyderutilssitesitecustomize.py",
      line 710, in runfile
      execfile(filename, namespace)



      File
      "C:SoftAnaconda3libsite-packagesspyderutilssitesitecustomize.py",
      line 101, in execfile
      exec(compile(f.read(), filename, 'exec'), namespace)



      File "C:/Users/WWW/Desktop/untitled0.py", line 108, in
      model = segmet(3,6)



      File "C:/Users/WWW/Desktop/untitled0.py", line 102, in segmet
      outputs = MaxUnpooling2D()([outputs,mask])



      File
      "C:SoftAnaconda3libsite-packagestensorflowpythonkerasenginebase_layer.py",
      line 757, in call
      outputs = self.call(inputs, *args, **kwargs)



      File "C:/Users/WWW/Desktop/untitled0.py", line 69, in call
      axis=0)



      File
      "C:SoftAnaconda3libsite-packagestensorflowpythonopsarray_ops.py",
      line 1124, in concat
      return gen_array_ops.concat_v2(values=values, axis=axis, name=name)



      File
      "C:SoftAnaconda3libsite-packagestensorflowpythonopsgen_array_ops.py",
      line 1202, in concat_v2
      "ConcatV2", values=values, axis=axis, name=name)



      File
      "C:SoftAnaconda3libsite-packagestensorflowpythonframeworkop_def_library.py",
      line 483, in _apply_op_helper
      raise TypeError("%s that don't all match." % prefix)



      TypeError: Tensors in list passed to 'values' of 'ConcatV2' Op have
      types [, int32, int32, int32] that don't
      all match.




      Because the input in tf.keras model have no fixed size. So, the output_shape in the code above is [None, None, None, 3]. The function like tf.concat and tf.reshape cannot process 'None'. Then, tensorflow gives an error. I know why error happened, but I don't know how to fixed it.



      Can anyone help me? Thanks.







      python tf.keras






      share|improve this question









      New contributor




      Wenchao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      Wenchao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited Mar 21 at 17:54









      Sagar P. Ghagare

      5452921




      5452921






      New contributor




      Wenchao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Mar 21 at 16:00









      WenchaoWenchao

      11




      11




      New contributor




      Wenchao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Wenchao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Wenchao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Wenchao is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55284571%2fhow-to-implement-upsampling-with-maskindex-in-tf-keras%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          Wenchao is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Wenchao is a new contributor. Be nice, and check out our Code of Conduct.












          Wenchao is a new contributor. Be nice, and check out our Code of Conduct.











          Wenchao is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55284571%2fhow-to-implement-upsampling-with-maskindex-in-tf-keras%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

          SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

          은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현