'float' object cannot be interpreted as an integer error when usng python inside RstudioPython integer division yields floatPython Error: 'float' object cannot be interpreted as an integerKeras AttributeError: 'list' object has no attribute 'ndim'reticulate does not work with R-Data frame and fit() function from Python (TypeError: 'float' object cannot be interpreted as an integer)What are the arguments in function fit of keras?Error while doing reshapeInvalidArgumentError when running model.fit()IOError: [Errno 2] No such file or directory when training Keras modelNeural Network classification'Tensor' object has no attribute 'ndim'
Twelve Labours - #03 Golden Hind
Why are so many cities in the list of 50 most violent cities in the world located in South and Central America?
Does animal blood, esp. human, really have similar salinity as ocean water, and does that prove anything about evolution?
Is Jupiter bright enough to be seen in color by the naked eye from Jupiter orbit?
Is there any algorithm that runs faster in Mathematica than in C or FORTRAN?
Make a haystack (with a needle)
Ambiguity - Should it be "mindful of committing logical fallacies" or "mindful of not committing logical fallacies"?
What elements would be created in a star composed entirely of gold?
How can Edward Snowden be denied a jury trial?
I am particularly fascinated by the Chinese character that is pronounced SHIN & means faith or belief
What happens to extra attacks after you kill your declared target
Why did my abusive boss insist that I take an unpaid leave of absence when I tried to resign?
If 120 experts in 12 different fields were sent back 10,000 years, could they recreate the 21 century in 100 years?
Employer says they want Quality & Quantity, but only pays bonuses based on the latter
instead of pressurizing an entire spacesuit with oxygen could oxygen just pressurize the head and the rest of the body be pressurized with water?
How does kinetic energy work in braking a vehicle?
What is a Spaceman Word™?
What's a good strategy for offering low on a house?
Letters associated with prime numbers
How to inflict ESD-damage on a board?
What does “studies need to be taken with more than the usual grain of salt” mean?
How can an immortal member of the nobility be prevented from taking the throne?
Graphical method in linear programming
Did the Allies reverse the threads on secret microfilm-hiding buttons to thwart the Germans?
'float' object cannot be interpreted as an integer error when usng python inside Rstudio
Python integer division yields floatPython Error: 'float' object cannot be interpreted as an integerKeras AttributeError: 'list' object has no attribute 'ndim'reticulate does not work with R-Data frame and fit() function from Python (TypeError: 'float' object cannot be interpreted as an integer)What are the arguments in function fit of keras?Error while doing reshapeInvalidArgumentError when running model.fit()IOError: [Errno 2] No such file or directory when training Keras modelNeural Network classification'Tensor' object has no attribute 'ndim'
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty
margin-bottom:0;
I am using newest version of R studio, 1.2.1335. I ma trying to use LSTM model using reticulate inside R script or PYthon inside Rmarkdown document, but both return an error.
First, my try with reticulate:
library(reticulate)
use_condaenv('my_env')
SAMPLES=10000
A = 0.7
B = 10000.0
AMPU = 0.2
AMPN = 0.08
LAG = 5
tseq <- seq(0,0.1*pi,,(SAMPLES+LAG))
set.seed(1)
c.unif <- runif(SAMPLES+LAG)
c.norm <- rnorm(SAMPLES+LAG)
y1 <- A*sin(B*tseq)+c.unif*AMPU
y2 <- A*sin(B*tseq)+c.norm*AMPN
data <- cbind(y1[1:SAMPLES],y2[1:SAMPLES])
trgt <- cbind(y1[LAG:(SAMPLES+LAG-1)],y2[LAG:(SAMPLES+LAG-1)])
LEN = 8
SRATE = 1
STRIDE = 1
BATCH = 16
### TEST
np <- import("numpy")
keraspy <- import("keras")
pybuiltin <- import_builtins(convert = TRUE)
train_gen <- keraspy$preprocessing$sequence$TimeseriesGenerator(
data=data,
targets=trgt,
length=LEN,
sampling_rate = SRATE,
stride = STRIDE,
start_index = 1,
end_index = 9000,
shuffle = FALSE,
reverse = FALSE,
batch_size = BATCH
)
val_gen = keraspy$preprocessing$sequence$TimeseriesGenerator(
data=data,
targets=trgt,
length=LEN,
sampling_rate = SRATE,
stride= STRIDE,
start_index = 9001,
end_index = 10000,
shuffle = FALSE,
reverse = FALSE,
batch_size = BATCH
)
model = keraspy$models$Sequential()
model$add(keraspy$layers$Flatten(input_shape = c(pybuiltin$int(LEN), 2L)))
model$add(keraspy$layers$Dense(units = 32L, activation = "relu"))
model$add(keraspy$layers$Dense(units = 2L))
model$compile(optimizer = "rmsprop", loss = "mae")
stepsPerEpoch <- floor((train_gen$end_index - train_gen$start_index)/BATCH)
validationSteps <- floor((val_gen$end_index - val_gen$start_index)/BATCH)
model$fit_generator(
train_gen,
steps_per_epoch = pybuiltin$int(stepsPerEpoch),
epochs = pybuiltin$int(100),
validation_data = val_gen,
validation_steps = pybuiltin$int(validationSteps)
)
This return error mentioned in the title:
Error in py_call_impl(callable, dots$args, dots$keywords) :
TypeError: 'float' object cannot be interpreted as an integer
I have also tried to estimate same model inside R notebook:
---
title: "R Notebook"
output: html_notebook
---
```r
SAMPLES=10000
A = 0.7
B = 10000.0
AMPU = 0.2
AMPN = 0.08
LAG = 5
tseq <- seq(0,0.1*pi,,(SAMPLES+LAG))
set.seed(1)
c.unif <- runif(SAMPLES+LAG)
c.norm <- rnorm(SAMPLES+LAG)
y1 <- A*sin(B*tseq)+c.unif*AMPU
y2 <- A*sin(B*tseq)+c.norm*AMPN
data <- cbind(y1[1:SAMPLES],y2[1:SAMPLES])
trgt <- cbind(y1[LAG:(SAMPLES+LAG-1)],y2[LAG:(SAMPLES+LAG-1)])
LEN = 8
SRATE = 1
STRIDE = 1
BATCH = 16
```
```python
import numpy as np
from keras.preprocessing.sequence import TimeseriesGenerator
from keras.models import Sequential
from keras.layers import Dense
import keras
import math
train_gen = TimeseriesGenerator(
data=r.data,
targets=r.trgt,
length=r.LEN,
sampling_rate = r.SRATE,
stride = r.STRIDE,
start_index = 1,
end_index = 9000,
shuffle = False,
reverse = False,
batch_size = r.BATCH
)
val_gen = TimeseriesGenerator(
data= r.data,
targets = r.trgt,
length= r.LEN,
sampling_rate = r.SRATE,
stride= r.STRIDE,
start_index = 9001,
end_index = 10000,
shuffle = False,
reverse = False,
batch_size = r.BATCH
)
math.floor((train_gen.end_index - train_gen.start_index)/int(r.BATCH))
train_gen.end_index
model = Sequential()
model.add(keras.layers.Flatten(input_shape = (int(r.LEN), 2)))
model.add(Dense(32, activation = "relu"))
model.add(Dense(2))
model.compile(optimizer = 'rmsprop', loss = 'mae')
model.fit_generator(
train_gen,
steps_per_epoch = math.floor((train_gen.end_index - train_gen.start_index)/float(r.BATCH)),
epochs = 100,
validation_data = val_gen,
validation_steps = math.floor((val_gen.end_index - val_gen.start_index)/float(r.BATCH))
)
```
but I got the same error.
If I define numbers as integers in the last step, I get smae error:
model.fit_generator(
train_gen,
steps_per_epoch = int(561),
epochs = int(100),
validation_data = val_gen,
validation_steps = int(61)
)
This is my first time using python inside Rstudio. Not very promising...
python r r-markdown rnotebook reticulate
add a comment
|
I am using newest version of R studio, 1.2.1335. I ma trying to use LSTM model using reticulate inside R script or PYthon inside Rmarkdown document, but both return an error.
First, my try with reticulate:
library(reticulate)
use_condaenv('my_env')
SAMPLES=10000
A = 0.7
B = 10000.0
AMPU = 0.2
AMPN = 0.08
LAG = 5
tseq <- seq(0,0.1*pi,,(SAMPLES+LAG))
set.seed(1)
c.unif <- runif(SAMPLES+LAG)
c.norm <- rnorm(SAMPLES+LAG)
y1 <- A*sin(B*tseq)+c.unif*AMPU
y2 <- A*sin(B*tseq)+c.norm*AMPN
data <- cbind(y1[1:SAMPLES],y2[1:SAMPLES])
trgt <- cbind(y1[LAG:(SAMPLES+LAG-1)],y2[LAG:(SAMPLES+LAG-1)])
LEN = 8
SRATE = 1
STRIDE = 1
BATCH = 16
### TEST
np <- import("numpy")
keraspy <- import("keras")
pybuiltin <- import_builtins(convert = TRUE)
train_gen <- keraspy$preprocessing$sequence$TimeseriesGenerator(
data=data,
targets=trgt,
length=LEN,
sampling_rate = SRATE,
stride = STRIDE,
start_index = 1,
end_index = 9000,
shuffle = FALSE,
reverse = FALSE,
batch_size = BATCH
)
val_gen = keraspy$preprocessing$sequence$TimeseriesGenerator(
data=data,
targets=trgt,
length=LEN,
sampling_rate = SRATE,
stride= STRIDE,
start_index = 9001,
end_index = 10000,
shuffle = FALSE,
reverse = FALSE,
batch_size = BATCH
)
model = keraspy$models$Sequential()
model$add(keraspy$layers$Flatten(input_shape = c(pybuiltin$int(LEN), 2L)))
model$add(keraspy$layers$Dense(units = 32L, activation = "relu"))
model$add(keraspy$layers$Dense(units = 2L))
model$compile(optimizer = "rmsprop", loss = "mae")
stepsPerEpoch <- floor((train_gen$end_index - train_gen$start_index)/BATCH)
validationSteps <- floor((val_gen$end_index - val_gen$start_index)/BATCH)
model$fit_generator(
train_gen,
steps_per_epoch = pybuiltin$int(stepsPerEpoch),
epochs = pybuiltin$int(100),
validation_data = val_gen,
validation_steps = pybuiltin$int(validationSteps)
)
This return error mentioned in the title:
Error in py_call_impl(callable, dots$args, dots$keywords) :
TypeError: 'float' object cannot be interpreted as an integer
I have also tried to estimate same model inside R notebook:
---
title: "R Notebook"
output: html_notebook
---
```r
SAMPLES=10000
A = 0.7
B = 10000.0
AMPU = 0.2
AMPN = 0.08
LAG = 5
tseq <- seq(0,0.1*pi,,(SAMPLES+LAG))
set.seed(1)
c.unif <- runif(SAMPLES+LAG)
c.norm <- rnorm(SAMPLES+LAG)
y1 <- A*sin(B*tseq)+c.unif*AMPU
y2 <- A*sin(B*tseq)+c.norm*AMPN
data <- cbind(y1[1:SAMPLES],y2[1:SAMPLES])
trgt <- cbind(y1[LAG:(SAMPLES+LAG-1)],y2[LAG:(SAMPLES+LAG-1)])
LEN = 8
SRATE = 1
STRIDE = 1
BATCH = 16
```
```python
import numpy as np
from keras.preprocessing.sequence import TimeseriesGenerator
from keras.models import Sequential
from keras.layers import Dense
import keras
import math
train_gen = TimeseriesGenerator(
data=r.data,
targets=r.trgt,
length=r.LEN,
sampling_rate = r.SRATE,
stride = r.STRIDE,
start_index = 1,
end_index = 9000,
shuffle = False,
reverse = False,
batch_size = r.BATCH
)
val_gen = TimeseriesGenerator(
data= r.data,
targets = r.trgt,
length= r.LEN,
sampling_rate = r.SRATE,
stride= r.STRIDE,
start_index = 9001,
end_index = 10000,
shuffle = False,
reverse = False,
batch_size = r.BATCH
)
math.floor((train_gen.end_index - train_gen.start_index)/int(r.BATCH))
train_gen.end_index
model = Sequential()
model.add(keras.layers.Flatten(input_shape = (int(r.LEN), 2)))
model.add(Dense(32, activation = "relu"))
model.add(Dense(2))
model.compile(optimizer = 'rmsprop', loss = 'mae')
model.fit_generator(
train_gen,
steps_per_epoch = math.floor((train_gen.end_index - train_gen.start_index)/float(r.BATCH)),
epochs = 100,
validation_data = val_gen,
validation_steps = math.floor((val_gen.end_index - val_gen.start_index)/float(r.BATCH))
)
```
but I got the same error.
If I define numbers as integers in the last step, I get smae error:
model.fit_generator(
train_gen,
steps_per_epoch = int(561),
epochs = int(100),
validation_data = val_gen,
validation_steps = int(61)
)
This is my first time using python inside Rstudio. Not very promising...
python r r-markdown rnotebook reticulate
add a comment
|
I am using newest version of R studio, 1.2.1335. I ma trying to use LSTM model using reticulate inside R script or PYthon inside Rmarkdown document, but both return an error.
First, my try with reticulate:
library(reticulate)
use_condaenv('my_env')
SAMPLES=10000
A = 0.7
B = 10000.0
AMPU = 0.2
AMPN = 0.08
LAG = 5
tseq <- seq(0,0.1*pi,,(SAMPLES+LAG))
set.seed(1)
c.unif <- runif(SAMPLES+LAG)
c.norm <- rnorm(SAMPLES+LAG)
y1 <- A*sin(B*tseq)+c.unif*AMPU
y2 <- A*sin(B*tseq)+c.norm*AMPN
data <- cbind(y1[1:SAMPLES],y2[1:SAMPLES])
trgt <- cbind(y1[LAG:(SAMPLES+LAG-1)],y2[LAG:(SAMPLES+LAG-1)])
LEN = 8
SRATE = 1
STRIDE = 1
BATCH = 16
### TEST
np <- import("numpy")
keraspy <- import("keras")
pybuiltin <- import_builtins(convert = TRUE)
train_gen <- keraspy$preprocessing$sequence$TimeseriesGenerator(
data=data,
targets=trgt,
length=LEN,
sampling_rate = SRATE,
stride = STRIDE,
start_index = 1,
end_index = 9000,
shuffle = FALSE,
reverse = FALSE,
batch_size = BATCH
)
val_gen = keraspy$preprocessing$sequence$TimeseriesGenerator(
data=data,
targets=trgt,
length=LEN,
sampling_rate = SRATE,
stride= STRIDE,
start_index = 9001,
end_index = 10000,
shuffle = FALSE,
reverse = FALSE,
batch_size = BATCH
)
model = keraspy$models$Sequential()
model$add(keraspy$layers$Flatten(input_shape = c(pybuiltin$int(LEN), 2L)))
model$add(keraspy$layers$Dense(units = 32L, activation = "relu"))
model$add(keraspy$layers$Dense(units = 2L))
model$compile(optimizer = "rmsprop", loss = "mae")
stepsPerEpoch <- floor((train_gen$end_index - train_gen$start_index)/BATCH)
validationSteps <- floor((val_gen$end_index - val_gen$start_index)/BATCH)
model$fit_generator(
train_gen,
steps_per_epoch = pybuiltin$int(stepsPerEpoch),
epochs = pybuiltin$int(100),
validation_data = val_gen,
validation_steps = pybuiltin$int(validationSteps)
)
This return error mentioned in the title:
Error in py_call_impl(callable, dots$args, dots$keywords) :
TypeError: 'float' object cannot be interpreted as an integer
I have also tried to estimate same model inside R notebook:
---
title: "R Notebook"
output: html_notebook
---
```r
SAMPLES=10000
A = 0.7
B = 10000.0
AMPU = 0.2
AMPN = 0.08
LAG = 5
tseq <- seq(0,0.1*pi,,(SAMPLES+LAG))
set.seed(1)
c.unif <- runif(SAMPLES+LAG)
c.norm <- rnorm(SAMPLES+LAG)
y1 <- A*sin(B*tseq)+c.unif*AMPU
y2 <- A*sin(B*tseq)+c.norm*AMPN
data <- cbind(y1[1:SAMPLES],y2[1:SAMPLES])
trgt <- cbind(y1[LAG:(SAMPLES+LAG-1)],y2[LAG:(SAMPLES+LAG-1)])
LEN = 8
SRATE = 1
STRIDE = 1
BATCH = 16
```
```python
import numpy as np
from keras.preprocessing.sequence import TimeseriesGenerator
from keras.models import Sequential
from keras.layers import Dense
import keras
import math
train_gen = TimeseriesGenerator(
data=r.data,
targets=r.trgt,
length=r.LEN,
sampling_rate = r.SRATE,
stride = r.STRIDE,
start_index = 1,
end_index = 9000,
shuffle = False,
reverse = False,
batch_size = r.BATCH
)
val_gen = TimeseriesGenerator(
data= r.data,
targets = r.trgt,
length= r.LEN,
sampling_rate = r.SRATE,
stride= r.STRIDE,
start_index = 9001,
end_index = 10000,
shuffle = False,
reverse = False,
batch_size = r.BATCH
)
math.floor((train_gen.end_index - train_gen.start_index)/int(r.BATCH))
train_gen.end_index
model = Sequential()
model.add(keras.layers.Flatten(input_shape = (int(r.LEN), 2)))
model.add(Dense(32, activation = "relu"))
model.add(Dense(2))
model.compile(optimizer = 'rmsprop', loss = 'mae')
model.fit_generator(
train_gen,
steps_per_epoch = math.floor((train_gen.end_index - train_gen.start_index)/float(r.BATCH)),
epochs = 100,
validation_data = val_gen,
validation_steps = math.floor((val_gen.end_index - val_gen.start_index)/float(r.BATCH))
)
```
but I got the same error.
If I define numbers as integers in the last step, I get smae error:
model.fit_generator(
train_gen,
steps_per_epoch = int(561),
epochs = int(100),
validation_data = val_gen,
validation_steps = int(61)
)
This is my first time using python inside Rstudio. Not very promising...
python r r-markdown rnotebook reticulate
I am using newest version of R studio, 1.2.1335. I ma trying to use LSTM model using reticulate inside R script or PYthon inside Rmarkdown document, but both return an error.
First, my try with reticulate:
library(reticulate)
use_condaenv('my_env')
SAMPLES=10000
A = 0.7
B = 10000.0
AMPU = 0.2
AMPN = 0.08
LAG = 5
tseq <- seq(0,0.1*pi,,(SAMPLES+LAG))
set.seed(1)
c.unif <- runif(SAMPLES+LAG)
c.norm <- rnorm(SAMPLES+LAG)
y1 <- A*sin(B*tseq)+c.unif*AMPU
y2 <- A*sin(B*tseq)+c.norm*AMPN
data <- cbind(y1[1:SAMPLES],y2[1:SAMPLES])
trgt <- cbind(y1[LAG:(SAMPLES+LAG-1)],y2[LAG:(SAMPLES+LAG-1)])
LEN = 8
SRATE = 1
STRIDE = 1
BATCH = 16
### TEST
np <- import("numpy")
keraspy <- import("keras")
pybuiltin <- import_builtins(convert = TRUE)
train_gen <- keraspy$preprocessing$sequence$TimeseriesGenerator(
data=data,
targets=trgt,
length=LEN,
sampling_rate = SRATE,
stride = STRIDE,
start_index = 1,
end_index = 9000,
shuffle = FALSE,
reverse = FALSE,
batch_size = BATCH
)
val_gen = keraspy$preprocessing$sequence$TimeseriesGenerator(
data=data,
targets=trgt,
length=LEN,
sampling_rate = SRATE,
stride= STRIDE,
start_index = 9001,
end_index = 10000,
shuffle = FALSE,
reverse = FALSE,
batch_size = BATCH
)
model = keraspy$models$Sequential()
model$add(keraspy$layers$Flatten(input_shape = c(pybuiltin$int(LEN), 2L)))
model$add(keraspy$layers$Dense(units = 32L, activation = "relu"))
model$add(keraspy$layers$Dense(units = 2L))
model$compile(optimizer = "rmsprop", loss = "mae")
stepsPerEpoch <- floor((train_gen$end_index - train_gen$start_index)/BATCH)
validationSteps <- floor((val_gen$end_index - val_gen$start_index)/BATCH)
model$fit_generator(
train_gen,
steps_per_epoch = pybuiltin$int(stepsPerEpoch),
epochs = pybuiltin$int(100),
validation_data = val_gen,
validation_steps = pybuiltin$int(validationSteps)
)
This return error mentioned in the title:
Error in py_call_impl(callable, dots$args, dots$keywords) :
TypeError: 'float' object cannot be interpreted as an integer
I have also tried to estimate same model inside R notebook:
---
title: "R Notebook"
output: html_notebook
---
```r
SAMPLES=10000
A = 0.7
B = 10000.0
AMPU = 0.2
AMPN = 0.08
LAG = 5
tseq <- seq(0,0.1*pi,,(SAMPLES+LAG))
set.seed(1)
c.unif <- runif(SAMPLES+LAG)
c.norm <- rnorm(SAMPLES+LAG)
y1 <- A*sin(B*tseq)+c.unif*AMPU
y2 <- A*sin(B*tseq)+c.norm*AMPN
data <- cbind(y1[1:SAMPLES],y2[1:SAMPLES])
trgt <- cbind(y1[LAG:(SAMPLES+LAG-1)],y2[LAG:(SAMPLES+LAG-1)])
LEN = 8
SRATE = 1
STRIDE = 1
BATCH = 16
```
```python
import numpy as np
from keras.preprocessing.sequence import TimeseriesGenerator
from keras.models import Sequential
from keras.layers import Dense
import keras
import math
train_gen = TimeseriesGenerator(
data=r.data,
targets=r.trgt,
length=r.LEN,
sampling_rate = r.SRATE,
stride = r.STRIDE,
start_index = 1,
end_index = 9000,
shuffle = False,
reverse = False,
batch_size = r.BATCH
)
val_gen = TimeseriesGenerator(
data= r.data,
targets = r.trgt,
length= r.LEN,
sampling_rate = r.SRATE,
stride= r.STRIDE,
start_index = 9001,
end_index = 10000,
shuffle = False,
reverse = False,
batch_size = r.BATCH
)
math.floor((train_gen.end_index - train_gen.start_index)/int(r.BATCH))
train_gen.end_index
model = Sequential()
model.add(keras.layers.Flatten(input_shape = (int(r.LEN), 2)))
model.add(Dense(32, activation = "relu"))
model.add(Dense(2))
model.compile(optimizer = 'rmsprop', loss = 'mae')
model.fit_generator(
train_gen,
steps_per_epoch = math.floor((train_gen.end_index - train_gen.start_index)/float(r.BATCH)),
epochs = 100,
validation_data = val_gen,
validation_steps = math.floor((val_gen.end_index - val_gen.start_index)/float(r.BATCH))
)
```
but I got the same error.
If I define numbers as integers in the last step, I get smae error:
model.fit_generator(
train_gen,
steps_per_epoch = int(561),
epochs = int(100),
validation_data = val_gen,
validation_steps = int(61)
)
This is my first time using python inside Rstudio. Not very promising...
python r r-markdown rnotebook reticulate
python r r-markdown rnotebook reticulate
asked Mar 28 at 21:38
MislavMislav
6395 silver badges21 bronze badges
6395 silver badges21 bronze badges
add a comment
|
add a comment
|
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55407239%2ffloat-object-cannot-be-interpreted-as-an-integer-error-when-usng-python-inside%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55407239%2ffloat-object-cannot-be-interpreted-as-an-integer-error-when-usng-python-inside%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown