How can you find when a value changes throughout every row in a data frame?How to drop rows of Pandas DataFrame whose value in certain columns is NaNHow to reset index in a pandas data frame?Pandas Datframe1 search for match in range of Dataframe2Change rows order pandas data framePython Pandas - Appending data from multiple data frames onto same row by matching primary identifier, leave blank if no results from that data frameMerging two CSV files into a Python data frame when the merge key string is not identicalChange stacking of dataframe in pandasCreate new dataframe using existing dataframe columns pandasComparing two pandas dataframes on column and the rowChanging x-axis labels in errorbar plot: no attribute 'get_xticklabels'

SOQL query WHERE filter by specific months

Is 'contemporary' ambiguous and if so is there a better word?

Why would a military not separate its forces into different branches?

Is an HNN extension of a virtually torsion-free group virtually torsion-free?

Where to draw the line between quantum mechanics theory and its interpretation(s)?

Can my 2 children, aged 10 and 12, who are US citizens, travel to the USA on expired American passports?

Will 700 more planes a day fly because of the Heathrow expansion?

Why did WWI include Japan?

Nested loops to process groups of pictures

Find magical solution to magical equation

Has the Hulk always been able to talk?

A factorization game

How in the world do I place line of text EVENLY between two horizontal tikz lines?

Feasibility of lava beings?

What to use instead of cling film to wrap pastry

Why do people keep telling me that I am a bad photographer?

History of the kernel of a homomorphism?

Can I use a Cat5e cable with an RJ45 and Cat6 port?

Where are the "shires" in the UK?

Why doesn't ever smooth vector bundle admits a line bundle?

Gerrymandering Puzzle - Rig the Election

What is the closest airport to the center of the city it serves?

Out of scope work duties and resignation

Side effects of Initiation by a Guru?



How can you find when a value changes throughout every row in a data frame?


How to drop rows of Pandas DataFrame whose value in certain columns is NaNHow to reset index in a pandas data frame?Pandas Datframe1 search for match in range of Dataframe2Change rows order pandas data framePython Pandas - Appending data from multiple data frames onto same row by matching primary identifier, leave blank if no results from that data frameMerging two CSV files into a Python data frame when the merge key string is not identicalChange stacking of dataframe in pandasCreate new dataframe using existing dataframe columns pandasComparing two pandas dataframes on column and the rowChanging x-axis labels in errorbar plot: no attribute 'get_xticklabels'






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








2















I am attempting to label accounts as new, current, lost, or returning but am having trouble with the logic. The row index is the account and the columns are the years and the values are 1's and 0's representing if the account is active or not. This is what i came up with so far. I'm not sure if this will ever work or if i'm close and I'm not sure how the logic would look for returning customers.
df2 is the original data frame and df3 = df2.shift(periods=1,axis=1)



def differences():
if df2 != df3 & df2 == 1:
return "New"
elif df2 != df3 & df2 ==0:
return "Lost"
elif df2 == df3 & df2 ==0:
return ""
else:
return "Continuing"
differences()


`



And when I run this code i get the following error:



couldn't find matching opcode for 'and_bdl'









share|improve this question




























    2















    I am attempting to label accounts as new, current, lost, or returning but am having trouble with the logic. The row index is the account and the columns are the years and the values are 1's and 0's representing if the account is active or not. This is what i came up with so far. I'm not sure if this will ever work or if i'm close and I'm not sure how the logic would look for returning customers.
    df2 is the original data frame and df3 = df2.shift(periods=1,axis=1)



    def differences():
    if df2 != df3 & df2 == 1:
    return "New"
    elif df2 != df3 & df2 ==0:
    return "Lost"
    elif df2 == df3 & df2 ==0:
    return ""
    else:
    return "Continuing"
    differences()


    `



    And when I run this code i get the following error:



    couldn't find matching opcode for 'and_bdl'









    share|improve this question
























      2












      2








      2








      I am attempting to label accounts as new, current, lost, or returning but am having trouble with the logic. The row index is the account and the columns are the years and the values are 1's and 0's representing if the account is active or not. This is what i came up with so far. I'm not sure if this will ever work or if i'm close and I'm not sure how the logic would look for returning customers.
      df2 is the original data frame and df3 = df2.shift(periods=1,axis=1)



      def differences():
      if df2 != df3 & df2 == 1:
      return "New"
      elif df2 != df3 & df2 ==0:
      return "Lost"
      elif df2 == df3 & df2 ==0:
      return ""
      else:
      return "Continuing"
      differences()


      `



      And when I run this code i get the following error:



      couldn't find matching opcode for 'and_bdl'









      share|improve this question














      I am attempting to label accounts as new, current, lost, or returning but am having trouble with the logic. The row index is the account and the columns are the years and the values are 1's and 0's representing if the account is active or not. This is what i came up with so far. I'm not sure if this will ever work or if i'm close and I'm not sure how the logic would look for returning customers.
      df2 is the original data frame and df3 = df2.shift(periods=1,axis=1)



      def differences():
      if df2 != df3 & df2 == 1:
      return "New"
      elif df2 != df3 & df2 ==0:
      return "Lost"
      elif df2 == df3 & df2 ==0:
      return ""
      else:
      return "Continuing"
      differences()


      `



      And when I run this code i get the following error:



      couldn't find matching opcode for 'and_bdl'






      python-3.x pandas jupyter-notebook






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Mar 23 at 1:42









      jwrigjwrig

      133




      133






















          1 Answer
          1






          active

          oldest

          votes


















          1














          The following code logic might work for you case.



          EDIT: Based on your comment, I modified the code so that all columns except the last one are checked.



          import pandas as pd

          str="""account 2019 2018 2017 2016 2015
          alex 1 0 0 0 0
          joe 0 0 1 0 0
          boss 1 1 1 1 1
          smith 1 1 0 1 0"""
          df = pd.read_csv(pd.io.common.StringIO(str), sep='s+', index_col='account')
          df
          #Out[46]:
          # 2019 2018 2017 2016 2015
          #account
          #alex 1 0 0 0 0
          #joe 0 0 1 0 0
          #boss 1 1 1 1 1
          #smith 1 1 0 1 0

          # find account status per-year
          def account_status(x):
          status = []
          n = x.size
          for i in range(n-1):
          if x.iloc[i] == 1:
          # if all rest are '0'
          if x.iloc[i+1:].eq(0).all():
          status.extend(['new'] + [None]*(n-i-2))
          break
          # if the previous year is '0'
          elif x.iloc[i+1] == 0:
          status.append('returning')
          else:
          status.append('continuing')
          else:
          # at least one '1' in previous years
          if x.iloc[i+1:].eq(1).any():
          status.append('lost')
          else:
          status.extend([None] * (n-i-1))
          break
          return status

          s = df.apply(account_status, axis=1).apply(pd.Series)
          s.columns = df.columns[:-1]
          s
          #Out[57]:
          # 2019 2018 2017 2016
          #account
          #alex new None None None
          #joe lost lost new None
          #boss continuing continuing continuing continuing
          #smith continuing returning lost new





          share|improve this answer

























          • Thank you very much for your response! That code makes a lot of sense. would there be a way to tweak it to make it so that it returns a value for every column? For instance return #smith continuing returning lost new " "

            – jwrig
            Mar 23 at 5:01












          • updated per your comment.

            – jxc
            Mar 23 at 15:29











          • That is exactly the result i was looking for. Thank you very much for your effort, patience and insight. I'm very new to python so you're showing me a lot of things that I will be looking deeper into as i expect to be using pandas regularly.

            – jwrig
            Mar 24 at 2:46











          • glad it helped and good luck to you with the new journey.

            – jxc
            Mar 24 at 2:59











          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55309823%2fhow-can-you-find-when-a-value-changes-throughout-every-row-in-a-data-frame%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          The following code logic might work for you case.



          EDIT: Based on your comment, I modified the code so that all columns except the last one are checked.



          import pandas as pd

          str="""account 2019 2018 2017 2016 2015
          alex 1 0 0 0 0
          joe 0 0 1 0 0
          boss 1 1 1 1 1
          smith 1 1 0 1 0"""
          df = pd.read_csv(pd.io.common.StringIO(str), sep='s+', index_col='account')
          df
          #Out[46]:
          # 2019 2018 2017 2016 2015
          #account
          #alex 1 0 0 0 0
          #joe 0 0 1 0 0
          #boss 1 1 1 1 1
          #smith 1 1 0 1 0

          # find account status per-year
          def account_status(x):
          status = []
          n = x.size
          for i in range(n-1):
          if x.iloc[i] == 1:
          # if all rest are '0'
          if x.iloc[i+1:].eq(0).all():
          status.extend(['new'] + [None]*(n-i-2))
          break
          # if the previous year is '0'
          elif x.iloc[i+1] == 0:
          status.append('returning')
          else:
          status.append('continuing')
          else:
          # at least one '1' in previous years
          if x.iloc[i+1:].eq(1).any():
          status.append('lost')
          else:
          status.extend([None] * (n-i-1))
          break
          return status

          s = df.apply(account_status, axis=1).apply(pd.Series)
          s.columns = df.columns[:-1]
          s
          #Out[57]:
          # 2019 2018 2017 2016
          #account
          #alex new None None None
          #joe lost lost new None
          #boss continuing continuing continuing continuing
          #smith continuing returning lost new





          share|improve this answer

























          • Thank you very much for your response! That code makes a lot of sense. would there be a way to tweak it to make it so that it returns a value for every column? For instance return #smith continuing returning lost new " "

            – jwrig
            Mar 23 at 5:01












          • updated per your comment.

            – jxc
            Mar 23 at 15:29











          • That is exactly the result i was looking for. Thank you very much for your effort, patience and insight. I'm very new to python so you're showing me a lot of things that I will be looking deeper into as i expect to be using pandas regularly.

            – jwrig
            Mar 24 at 2:46











          • glad it helped and good luck to you with the new journey.

            – jxc
            Mar 24 at 2:59















          1














          The following code logic might work for you case.



          EDIT: Based on your comment, I modified the code so that all columns except the last one are checked.



          import pandas as pd

          str="""account 2019 2018 2017 2016 2015
          alex 1 0 0 0 0
          joe 0 0 1 0 0
          boss 1 1 1 1 1
          smith 1 1 0 1 0"""
          df = pd.read_csv(pd.io.common.StringIO(str), sep='s+', index_col='account')
          df
          #Out[46]:
          # 2019 2018 2017 2016 2015
          #account
          #alex 1 0 0 0 0
          #joe 0 0 1 0 0
          #boss 1 1 1 1 1
          #smith 1 1 0 1 0

          # find account status per-year
          def account_status(x):
          status = []
          n = x.size
          for i in range(n-1):
          if x.iloc[i] == 1:
          # if all rest are '0'
          if x.iloc[i+1:].eq(0).all():
          status.extend(['new'] + [None]*(n-i-2))
          break
          # if the previous year is '0'
          elif x.iloc[i+1] == 0:
          status.append('returning')
          else:
          status.append('continuing')
          else:
          # at least one '1' in previous years
          if x.iloc[i+1:].eq(1).any():
          status.append('lost')
          else:
          status.extend([None] * (n-i-1))
          break
          return status

          s = df.apply(account_status, axis=1).apply(pd.Series)
          s.columns = df.columns[:-1]
          s
          #Out[57]:
          # 2019 2018 2017 2016
          #account
          #alex new None None None
          #joe lost lost new None
          #boss continuing continuing continuing continuing
          #smith continuing returning lost new





          share|improve this answer

























          • Thank you very much for your response! That code makes a lot of sense. would there be a way to tweak it to make it so that it returns a value for every column? For instance return #smith continuing returning lost new " "

            – jwrig
            Mar 23 at 5:01












          • updated per your comment.

            – jxc
            Mar 23 at 15:29











          • That is exactly the result i was looking for. Thank you very much for your effort, patience and insight. I'm very new to python so you're showing me a lot of things that I will be looking deeper into as i expect to be using pandas regularly.

            – jwrig
            Mar 24 at 2:46











          • glad it helped and good luck to you with the new journey.

            – jxc
            Mar 24 at 2:59













          1












          1








          1







          The following code logic might work for you case.



          EDIT: Based on your comment, I modified the code so that all columns except the last one are checked.



          import pandas as pd

          str="""account 2019 2018 2017 2016 2015
          alex 1 0 0 0 0
          joe 0 0 1 0 0
          boss 1 1 1 1 1
          smith 1 1 0 1 0"""
          df = pd.read_csv(pd.io.common.StringIO(str), sep='s+', index_col='account')
          df
          #Out[46]:
          # 2019 2018 2017 2016 2015
          #account
          #alex 1 0 0 0 0
          #joe 0 0 1 0 0
          #boss 1 1 1 1 1
          #smith 1 1 0 1 0

          # find account status per-year
          def account_status(x):
          status = []
          n = x.size
          for i in range(n-1):
          if x.iloc[i] == 1:
          # if all rest are '0'
          if x.iloc[i+1:].eq(0).all():
          status.extend(['new'] + [None]*(n-i-2))
          break
          # if the previous year is '0'
          elif x.iloc[i+1] == 0:
          status.append('returning')
          else:
          status.append('continuing')
          else:
          # at least one '1' in previous years
          if x.iloc[i+1:].eq(1).any():
          status.append('lost')
          else:
          status.extend([None] * (n-i-1))
          break
          return status

          s = df.apply(account_status, axis=1).apply(pd.Series)
          s.columns = df.columns[:-1]
          s
          #Out[57]:
          # 2019 2018 2017 2016
          #account
          #alex new None None None
          #joe lost lost new None
          #boss continuing continuing continuing continuing
          #smith continuing returning lost new





          share|improve this answer















          The following code logic might work for you case.



          EDIT: Based on your comment, I modified the code so that all columns except the last one are checked.



          import pandas as pd

          str="""account 2019 2018 2017 2016 2015
          alex 1 0 0 0 0
          joe 0 0 1 0 0
          boss 1 1 1 1 1
          smith 1 1 0 1 0"""
          df = pd.read_csv(pd.io.common.StringIO(str), sep='s+', index_col='account')
          df
          #Out[46]:
          # 2019 2018 2017 2016 2015
          #account
          #alex 1 0 0 0 0
          #joe 0 0 1 0 0
          #boss 1 1 1 1 1
          #smith 1 1 0 1 0

          # find account status per-year
          def account_status(x):
          status = []
          n = x.size
          for i in range(n-1):
          if x.iloc[i] == 1:
          # if all rest are '0'
          if x.iloc[i+1:].eq(0).all():
          status.extend(['new'] + [None]*(n-i-2))
          break
          # if the previous year is '0'
          elif x.iloc[i+1] == 0:
          status.append('returning')
          else:
          status.append('continuing')
          else:
          # at least one '1' in previous years
          if x.iloc[i+1:].eq(1).any():
          status.append('lost')
          else:
          status.extend([None] * (n-i-1))
          break
          return status

          s = df.apply(account_status, axis=1).apply(pd.Series)
          s.columns = df.columns[:-1]
          s
          #Out[57]:
          # 2019 2018 2017 2016
          #account
          #alex new None None None
          #joe lost lost new None
          #boss continuing continuing continuing continuing
          #smith continuing returning lost new






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Mar 23 at 15:28

























          answered Mar 23 at 3:56









          jxcjxc

          1,5232310




          1,5232310












          • Thank you very much for your response! That code makes a lot of sense. would there be a way to tweak it to make it so that it returns a value for every column? For instance return #smith continuing returning lost new " "

            – jwrig
            Mar 23 at 5:01












          • updated per your comment.

            – jxc
            Mar 23 at 15:29











          • That is exactly the result i was looking for. Thank you very much for your effort, patience and insight. I'm very new to python so you're showing me a lot of things that I will be looking deeper into as i expect to be using pandas regularly.

            – jwrig
            Mar 24 at 2:46











          • glad it helped and good luck to you with the new journey.

            – jxc
            Mar 24 at 2:59

















          • Thank you very much for your response! That code makes a lot of sense. would there be a way to tweak it to make it so that it returns a value for every column? For instance return #smith continuing returning lost new " "

            – jwrig
            Mar 23 at 5:01












          • updated per your comment.

            – jxc
            Mar 23 at 15:29











          • That is exactly the result i was looking for. Thank you very much for your effort, patience and insight. I'm very new to python so you're showing me a lot of things that I will be looking deeper into as i expect to be using pandas regularly.

            – jwrig
            Mar 24 at 2:46











          • glad it helped and good luck to you with the new journey.

            – jxc
            Mar 24 at 2:59
















          Thank you very much for your response! That code makes a lot of sense. would there be a way to tweak it to make it so that it returns a value for every column? For instance return #smith continuing returning lost new " "

          – jwrig
          Mar 23 at 5:01






          Thank you very much for your response! That code makes a lot of sense. would there be a way to tweak it to make it so that it returns a value for every column? For instance return #smith continuing returning lost new " "

          – jwrig
          Mar 23 at 5:01














          updated per your comment.

          – jxc
          Mar 23 at 15:29





          updated per your comment.

          – jxc
          Mar 23 at 15:29













          That is exactly the result i was looking for. Thank you very much for your effort, patience and insight. I'm very new to python so you're showing me a lot of things that I will be looking deeper into as i expect to be using pandas regularly.

          – jwrig
          Mar 24 at 2:46





          That is exactly the result i was looking for. Thank you very much for your effort, patience and insight. I'm very new to python so you're showing me a lot of things that I will be looking deeper into as i expect to be using pandas regularly.

          – jwrig
          Mar 24 at 2:46













          glad it helped and good luck to you with the new journey.

          – jxc
          Mar 24 at 2:59





          glad it helped and good luck to you with the new journey.

          – jxc
          Mar 24 at 2:59



















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55309823%2fhow-can-you-find-when-a-value-changes-throughout-every-row-in-a-data-frame%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

          SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

          은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현