How to compute mean average precision?How to merge two dictionaries in a single expression?How do I efficiently iterate over each entry in a Java Map?How do I sort a list of dictionaries by a value of the dictionary?How can I initialise a static Map?How do I sort a dictionary by value?How to remove a key from a Python dictionary?Yolo v1 bounding boxes during training stepUsing pure numpy metric as metric in Keras/TensorFlowConfusions regarding RetinaNetIoU. How can I calculate the true positive rate for an object detection algorithm, where I can have multiple objects per image?
How do I keep a running total of data in a column in Excel?
Automorphisms and epimorphisms of finite groups
Fully submerged water bath for stove top baking?
What verb for taking advantage fits in "I don't want to ________ on the friendship"?
Find the closest three-digit hex colour
Is it possible to alias a column based on the result of a select+where?
Dynamic Sql Query - how to add an int to the code?
Why would Dementors torture a Death Eater if they are loyal to Voldemort?
How does the 'five minute adventuring day' affect class balance?
Why should I allow multiple IPs on a website for a single session?
he and she - er und sie
Having to constantly redo everything because I don't know how to do it
Customs and immigration on a USA-UK-Sweden flight itinerary
Why am I getting an electric shock from the water in my hot tub?
Installed software from source, how to say yum not to install it from package?
Does it make sense to (partially) create a conlang that you don't intend to actually use in the story?
English idiomatic equivalents of 能骗就骗 (if you can cheat, then cheat)
Perform mirror symmetry transformation of 3D model (in OBJ)
Is leaving out prefixes like "rauf", "rüber", "rein" when describing movement considered a big mistake in spoken German?
What was the point of separating stdout and stderr?
Russian equivalents of 能骗就骗 (if you can cheat, then cheat)
How would one prevent political gerrymandering?
German idiomatic equivalents of 能骗就骗 (if you can cheat, then cheat)
Word ending in "-ine" for rat-like
How to compute mean average precision?
How to merge two dictionaries in a single expression?How do I efficiently iterate over each entry in a Java Map?How do I sort a list of dictionaries by a value of the dictionary?How can I initialise a static Map?How do I sort a dictionary by value?How to remove a key from a Python dictionary?Yolo v1 bounding boxes during training stepUsing pure numpy metric as metric in Keras/TensorFlowConfusions regarding RetinaNetIoU. How can I calculate the true positive rate for an object detection algorithm, where I can have multiple objects per image?
I found this code at:
https://www.kaggle.com/chenyc15/mean-average-precision-metric
I try how to compute mAP. I have 2 question:
1.What is 'scores' ? Is it a IoU result?
scores: length N numpy array of scores associated with predicted bboxes
- I thought that mAP is computed using only one threshold, but there is a lot of threshold. Why?
def map_iou(boxes_true, boxes_pred, scores, thresholds = [0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75]):
Mean average precision at differnet intersection over union (IoU) threshold
input:
boxes_true: Mx4 numpy array of ground true bounding boxes of one image.
bbox format: (x1, y1, w, h)
boxes_pred: Nx4 numpy array of predicted bounding boxes of one image.
bbox format: (x1, y1, w, h)
scores: length N numpy array of scores associated with predicted bboxes
thresholds: IoU shresholds to evaluate mean average precision on
output:
map: mean average precision of the image
# According to the introduction, images with no ground truth bboxes will not be
# included in the map score unless there is a false positive detection (?)
# return None if both are empty, don't count the image in final evaluation (?)
if len(boxes_true) == 0 and len(boxes_pred) == 0:
return None
assert boxes_true.shape[1] == 4 or boxes_pred.shape[1] == 4, "boxes should be 2D arrays with shape[1]=4"
if len(boxes_pred):
assert len(scores) == len(boxes_pred), "boxes_pred and scores should be same length"
# sort boxes_pred by scores in decreasing order
boxes_pred = boxes_pred[np.argsort(scores)[::-1], :]
map_total = 0
# loop over thresholds
for t in thresholds:
matched_bt = set()
tp, fn = 0, 0
for i, bt in enumerate(boxes_true):
matched = False
for j, bp in enumerate(boxes_pred):
miou = iou(bt, bp)
if miou >= t and not matched and j not in matched_bt:
matched = True
tp += 1 # bt is matched for the first time, count as TP
matched_bt.add(j)
if not matched:
fn += 1 # bt has no match, count as FN
fp = len(boxes_pred) - len(matched_bt) # FP is the bp that not matched to any bt
m = tp / (tp + fn + fp)
map_total += m
return map_total / len(thresholds)
dictionary deep-learning
add a comment |
I found this code at:
https://www.kaggle.com/chenyc15/mean-average-precision-metric
I try how to compute mAP. I have 2 question:
1.What is 'scores' ? Is it a IoU result?
scores: length N numpy array of scores associated with predicted bboxes
- I thought that mAP is computed using only one threshold, but there is a lot of threshold. Why?
def map_iou(boxes_true, boxes_pred, scores, thresholds = [0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75]):
Mean average precision at differnet intersection over union (IoU) threshold
input:
boxes_true: Mx4 numpy array of ground true bounding boxes of one image.
bbox format: (x1, y1, w, h)
boxes_pred: Nx4 numpy array of predicted bounding boxes of one image.
bbox format: (x1, y1, w, h)
scores: length N numpy array of scores associated with predicted bboxes
thresholds: IoU shresholds to evaluate mean average precision on
output:
map: mean average precision of the image
# According to the introduction, images with no ground truth bboxes will not be
# included in the map score unless there is a false positive detection (?)
# return None if both are empty, don't count the image in final evaluation (?)
if len(boxes_true) == 0 and len(boxes_pred) == 0:
return None
assert boxes_true.shape[1] == 4 or boxes_pred.shape[1] == 4, "boxes should be 2D arrays with shape[1]=4"
if len(boxes_pred):
assert len(scores) == len(boxes_pred), "boxes_pred and scores should be same length"
# sort boxes_pred by scores in decreasing order
boxes_pred = boxes_pred[np.argsort(scores)[::-1], :]
map_total = 0
# loop over thresholds
for t in thresholds:
matched_bt = set()
tp, fn = 0, 0
for i, bt in enumerate(boxes_true):
matched = False
for j, bp in enumerate(boxes_pred):
miou = iou(bt, bp)
if miou >= t and not matched and j not in matched_bt:
matched = True
tp += 1 # bt is matched for the first time, count as TP
matched_bt.add(j)
if not matched:
fn += 1 # bt has no match, count as FN
fp = len(boxes_pred) - len(matched_bt) # FP is the bp that not matched to any bt
m = tp / (tp + fn + fp)
map_total += m
return map_total / len(thresholds)
dictionary deep-learning
add a comment |
I found this code at:
https://www.kaggle.com/chenyc15/mean-average-precision-metric
I try how to compute mAP. I have 2 question:
1.What is 'scores' ? Is it a IoU result?
scores: length N numpy array of scores associated with predicted bboxes
- I thought that mAP is computed using only one threshold, but there is a lot of threshold. Why?
def map_iou(boxes_true, boxes_pred, scores, thresholds = [0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75]):
Mean average precision at differnet intersection over union (IoU) threshold
input:
boxes_true: Mx4 numpy array of ground true bounding boxes of one image.
bbox format: (x1, y1, w, h)
boxes_pred: Nx4 numpy array of predicted bounding boxes of one image.
bbox format: (x1, y1, w, h)
scores: length N numpy array of scores associated with predicted bboxes
thresholds: IoU shresholds to evaluate mean average precision on
output:
map: mean average precision of the image
# According to the introduction, images with no ground truth bboxes will not be
# included in the map score unless there is a false positive detection (?)
# return None if both are empty, don't count the image in final evaluation (?)
if len(boxes_true) == 0 and len(boxes_pred) == 0:
return None
assert boxes_true.shape[1] == 4 or boxes_pred.shape[1] == 4, "boxes should be 2D arrays with shape[1]=4"
if len(boxes_pred):
assert len(scores) == len(boxes_pred), "boxes_pred and scores should be same length"
# sort boxes_pred by scores in decreasing order
boxes_pred = boxes_pred[np.argsort(scores)[::-1], :]
map_total = 0
# loop over thresholds
for t in thresholds:
matched_bt = set()
tp, fn = 0, 0
for i, bt in enumerate(boxes_true):
matched = False
for j, bp in enumerate(boxes_pred):
miou = iou(bt, bp)
if miou >= t and not matched and j not in matched_bt:
matched = True
tp += 1 # bt is matched for the first time, count as TP
matched_bt.add(j)
if not matched:
fn += 1 # bt has no match, count as FN
fp = len(boxes_pred) - len(matched_bt) # FP is the bp that not matched to any bt
m = tp / (tp + fn + fp)
map_total += m
return map_total / len(thresholds)
dictionary deep-learning
I found this code at:
https://www.kaggle.com/chenyc15/mean-average-precision-metric
I try how to compute mAP. I have 2 question:
1.What is 'scores' ? Is it a IoU result?
scores: length N numpy array of scores associated with predicted bboxes
- I thought that mAP is computed using only one threshold, but there is a lot of threshold. Why?
def map_iou(boxes_true, boxes_pred, scores, thresholds = [0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75]):
Mean average precision at differnet intersection over union (IoU) threshold
input:
boxes_true: Mx4 numpy array of ground true bounding boxes of one image.
bbox format: (x1, y1, w, h)
boxes_pred: Nx4 numpy array of predicted bounding boxes of one image.
bbox format: (x1, y1, w, h)
scores: length N numpy array of scores associated with predicted bboxes
thresholds: IoU shresholds to evaluate mean average precision on
output:
map: mean average precision of the image
# According to the introduction, images with no ground truth bboxes will not be
# included in the map score unless there is a false positive detection (?)
# return None if both are empty, don't count the image in final evaluation (?)
if len(boxes_true) == 0 and len(boxes_pred) == 0:
return None
assert boxes_true.shape[1] == 4 or boxes_pred.shape[1] == 4, "boxes should be 2D arrays with shape[1]=4"
if len(boxes_pred):
assert len(scores) == len(boxes_pred), "boxes_pred and scores should be same length"
# sort boxes_pred by scores in decreasing order
boxes_pred = boxes_pred[np.argsort(scores)[::-1], :]
map_total = 0
# loop over thresholds
for t in thresholds:
matched_bt = set()
tp, fn = 0, 0
for i, bt in enumerate(boxes_true):
matched = False
for j, bp in enumerate(boxes_pred):
miou = iou(bt, bp)
if miou >= t and not matched and j not in matched_bt:
matched = True
tp += 1 # bt is matched for the first time, count as TP
matched_bt.add(j)
if not matched:
fn += 1 # bt has no match, count as FN
fp = len(boxes_pred) - len(matched_bt) # FP is the bp that not matched to any bt
m = tp / (tp + fn + fp)
map_total += m
return map_total / len(thresholds)
dictionary deep-learning
dictionary deep-learning
asked Mar 25 at 15:42
supermariosupermario
15 bronze badges
15 bronze badges
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55341492%2fhow-to-compute-mean-average-precision%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Is this question similar to what you get asked at work? Learn more about asking and sharing private information with your coworkers using Stack Overflow for Teams.
Is this question similar to what you get asked at work? Learn more about asking and sharing private information with your coworkers using Stack Overflow for Teams.
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55341492%2fhow-to-compute-mean-average-precision%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown