How to Calculate F-measure, Precesion, Recall for Naive and Svm Nltk , Erro: string object has no attribute copyHow to use the a k-fold cross validation in scikit with naive bayes classifier and NLTKHow to run naive Bayes from NLTK with Python Pandas?How to do SVM Tagging in NLTK Python on Unicode DataCalculating Precision, Recall, Accuracy using SVMcalculating probability of sentence with Naive Bayes using NLTKClassifying text strings into multiple classes using Naive Bayes with NLTKHow to calculate precision and recall in KerasCalculate Accuracy, Precison and Recall for Naive Bayes classifier (Manual Calculation)Why do I get “expected string or buffer,” when I am working with strings?How can I calculate perplexity using nltk

Does Google Maps take into account hills/inclines for route times?

Grammy Winners Grading

Replacements for swear words

Trying to find a flaw in my proof that there are more rearrangements of an infinite series than real numbers

Crowbar circuit causes unexpected behavior for op amp circuit

Why does resistance reduce when a conductive fabric is stretched?

Where or how can I find what interfaces an out of the box Apex class implements?

Bishop game - python

Is this floating-point optimization allowed?

Why did the Japanese attack the Aleutians at the same time as Midway?

Cops: The Hidden OEIS Substring

As a DM, how to avoid unconscious metagaming when dealing with a high AC character?

Extract an attribute value from XML

Why did my rum cake turn black?

A DVR algebra with weird automorphisms

What would be the ideal melee weapon made of "Phase Metal"?

Can I call 112 to check a police officer's identity in the Czech Republic?

Email about missed connecting flight compensation 5 months after flight, is there a point?

When did the Roman Empire fall according to contemporaries?

Optimising Table wrapping over a Select

The monorail explodes before I can get on it

Are neural networks prone to catastrophic forgetting?

Why can't supermassive black holes merge? (or can they?)

Was adding milk to tea started to reduce employee tea break time?



How to Calculate F-measure, Precesion, Recall for Naive and Svm Nltk , Erro: string object has no attribute copy


How to use the a k-fold cross validation in scikit with naive bayes classifier and NLTKHow to run naive Bayes from NLTK with Python Pandas?How to do SVM Tagging in NLTK Python on Unicode DataCalculating Precision, Recall, Accuracy using SVMcalculating probability of sentence with Naive Bayes using NLTKClassifying text strings into multiple classes using Naive Bayes with NLTKHow to calculate precision and recall in KerasCalculate Accuracy, Precison and Recall for Naive Bayes classifier (Manual Calculation)Why do I get “expected string or buffer,” when I am working with strings?How can I calculate perplexity using nltk






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2















I have to Calculate Precesion, F-measure and Recall for the Naive and Svm with sentiment classification. it return's me error as string object has no attribute copy.
In code preprocessedTrainingSet gives the processed Training Data and preprocessedTestSet gives the processed test dataset



word_features = buildVocabulary(preprocessedTrainingSet)
trainingFeatures=nltk.classify.apply_features(extract_features,preprocessedTrainingSet)

NBayesClassifier=nltk.NaiveBayesClassifier.train(trainingFeatures)
accuracy = nltk.classify.util.accuracy(NBayesClassifier, preprocessedTestSet) #this returns error


I am posting my whole code here:



import csv
import re
from nltk.tokenize import word_tokenize
from string import punctuation
from nltk.corpus import stopwords
import nltk
import sys
import os
nltk.download('punkt')
import csv
import datetime
from bs4 import BeautifulSoup
import re
import itertools
import emoji

def load_dict_smileys():

return
":‑)":"smiley",
":-]":"smiley",




def load_dict_contractions():

return
"ain't":"is not",
"amn't":"am not",




def strip_accents(text):
if 'ø' in text or 'Ø' in text:
#Do nothing when finding ø
return text
text = text.encode('ascii', 'ignore')
text = text.decode("utf-8")
return str(text)



def buildTestSet():
Test_data = []
for line in open('Avengers.csv','r'):
cells = line.split( "," )
Test_data.append(cells[1])

return Test_data


testData = buildTestSet()


def buildTrainingSet(corpusFile):
corpus = []
trainingDataSet = []
with open(corpusFile, "rt", encoding="utf8") as csvFile:
lineReader = csv.reader(csvFile,delimiter=',', quotechar=""")

for row in lineReader:
trainingDataSet.append(row)
return trainingDataSet

corpusFile = "trainingSet.csv"
trainingData = buildTrainingSet(corpusFile)


class PreProcessTweets:
def __init__(self):
self._stopwords = set(stopwords.words('english') + list(punctuation) + ['AT_USER','URL'])

def processTweets(self, list_of_tweets):
processedTweets=[]
for tweet in list_of_tweets:

if testD == 1:
#print(tweet)
processedTweets.append((self._processTweet(tweet),tweet[3]))
else:
processedTweets.append((self._processTweet(tweet[2]),tweet[3]))

return processedTweets

def _processTweet(self, tweet):
tweet = BeautifulSoup(tweet).get_text()
tweet = tweet.replace('x92',"'")
tweet = ' '.join(re.sub("(@[A-Za-z0-9]+)|(#[A-Za-z0-9]+)", " ", tweet).split())
tweet = ' '.join(re.sub("(w+://S+)", " ", tweet).split())
tweet = ' '.join(re.sub("[.,!?:;-=]", " ", tweet).split())
#Lower case
tweet = tweet.lower()
CONTRACTIONS = load_dict_contractions()
tweet = tweet.replace("’","'")
words = tweet.split()
reformed = [CONTRACTIONS[word] if word in CONTRACTIONS else word for word in words]
tweet = " ".join(reformed)
tweet = ''.join(''.join(s)[:2] for _, s in itertools.groupby(tweet))

SMILEY = load_dict_smileys()
words = tweet.split()
reformed = [SMILEY[word] if word in SMILEY else word for word in words]
tweet = " ".join(reformed)
#Deal with emojis
tweet = emoji.demojize(tweet)
#Strip accents
tweet= strip_accents(tweet)
tweet = tweet.replace(":"," ")
tweet = ' '.join(tweet.split())

return tweet

testD = 0
tweetProcessor = PreProcessTweets()
preprocessedTrainingSet = tweetProcessor.processTweets(trainingData)
testD = 1
preprocessedTestSet = tweetProcessor.processTweets(testData)




def buildVocabulary(preprocessedTrainingData):
all_words = []

for (words, sentiment) in preprocessedTrainingData:
all_words.extend(words)

wordlist = nltk.FreqDist(all_words)
word_features = wordlist.keys()

return word_features

def extract_features(tweet):
tweet_words=set(tweet)
features=
for word in word_features:
features['contains(%s)' % word]=(word in tweet_words)
return features

trainingFeatures=nltk.classify.apply_features(extract_features,preprocessedTrainingSet)

NBayesClassifier=nltk.NaiveBayesClassifier.train(trainingFeatures)



NBResultLabels = [NBayesClassifier.classify(extract_features(tweet[0])) for tweet in preprocessedTestSet]

if NBResultLabels.count('positive') > NBResultLabels.count('negative'):
print("Overall Positive Sentiment")
print("Positive Sentiment Percentage = " + str(100*NBResultLabels.count('positive')/len(NBResultLabels)) + "%")
else:
print("Overall Negative Sentiment")
print("Negative Sentiment Percentage = " + str(100*NBResultLabels.count('negative')/len(NBResultLabels)) + "%")

accuracy = nltk.classify.util.accuracy(NBayesClassifier, preprocessedTestSet)
print(accuracy*100)


the result should come in this way



 precision recall f1-score support

0 0.65 1.00 0.79 17
1 0.57 0.75 0.65 16
2 0.33 0.06 0.10 17
avg / total 0.52 0.60 0.51 50









share|improve this question






























    2















    I have to Calculate Precesion, F-measure and Recall for the Naive and Svm with sentiment classification. it return's me error as string object has no attribute copy.
    In code preprocessedTrainingSet gives the processed Training Data and preprocessedTestSet gives the processed test dataset



    word_features = buildVocabulary(preprocessedTrainingSet)
    trainingFeatures=nltk.classify.apply_features(extract_features,preprocessedTrainingSet)

    NBayesClassifier=nltk.NaiveBayesClassifier.train(trainingFeatures)
    accuracy = nltk.classify.util.accuracy(NBayesClassifier, preprocessedTestSet) #this returns error


    I am posting my whole code here:



    import csv
    import re
    from nltk.tokenize import word_tokenize
    from string import punctuation
    from nltk.corpus import stopwords
    import nltk
    import sys
    import os
    nltk.download('punkt')
    import csv
    import datetime
    from bs4 import BeautifulSoup
    import re
    import itertools
    import emoji

    def load_dict_smileys():

    return
    ":‑)":"smiley",
    ":-]":"smiley",




    def load_dict_contractions():

    return
    "ain't":"is not",
    "amn't":"am not",




    def strip_accents(text):
    if 'ø' in text or 'Ø' in text:
    #Do nothing when finding ø
    return text
    text = text.encode('ascii', 'ignore')
    text = text.decode("utf-8")
    return str(text)



    def buildTestSet():
    Test_data = []
    for line in open('Avengers.csv','r'):
    cells = line.split( "," )
    Test_data.append(cells[1])

    return Test_data


    testData = buildTestSet()


    def buildTrainingSet(corpusFile):
    corpus = []
    trainingDataSet = []
    with open(corpusFile, "rt", encoding="utf8") as csvFile:
    lineReader = csv.reader(csvFile,delimiter=',', quotechar=""")

    for row in lineReader:
    trainingDataSet.append(row)
    return trainingDataSet

    corpusFile = "trainingSet.csv"
    trainingData = buildTrainingSet(corpusFile)


    class PreProcessTweets:
    def __init__(self):
    self._stopwords = set(stopwords.words('english') + list(punctuation) + ['AT_USER','URL'])

    def processTweets(self, list_of_tweets):
    processedTweets=[]
    for tweet in list_of_tweets:

    if testD == 1:
    #print(tweet)
    processedTweets.append((self._processTweet(tweet),tweet[3]))
    else:
    processedTweets.append((self._processTweet(tweet[2]),tweet[3]))

    return processedTweets

    def _processTweet(self, tweet):
    tweet = BeautifulSoup(tweet).get_text()
    tweet = tweet.replace('x92',"'")
    tweet = ' '.join(re.sub("(@[A-Za-z0-9]+)|(#[A-Za-z0-9]+)", " ", tweet).split())
    tweet = ' '.join(re.sub("(w+://S+)", " ", tweet).split())
    tweet = ' '.join(re.sub("[.,!?:;-=]", " ", tweet).split())
    #Lower case
    tweet = tweet.lower()
    CONTRACTIONS = load_dict_contractions()
    tweet = tweet.replace("’","'")
    words = tweet.split()
    reformed = [CONTRACTIONS[word] if word in CONTRACTIONS else word for word in words]
    tweet = " ".join(reformed)
    tweet = ''.join(''.join(s)[:2] for _, s in itertools.groupby(tweet))

    SMILEY = load_dict_smileys()
    words = tweet.split()
    reformed = [SMILEY[word] if word in SMILEY else word for word in words]
    tweet = " ".join(reformed)
    #Deal with emojis
    tweet = emoji.demojize(tweet)
    #Strip accents
    tweet= strip_accents(tweet)
    tweet = tweet.replace(":"," ")
    tweet = ' '.join(tweet.split())

    return tweet

    testD = 0
    tweetProcessor = PreProcessTweets()
    preprocessedTrainingSet = tweetProcessor.processTweets(trainingData)
    testD = 1
    preprocessedTestSet = tweetProcessor.processTweets(testData)




    def buildVocabulary(preprocessedTrainingData):
    all_words = []

    for (words, sentiment) in preprocessedTrainingData:
    all_words.extend(words)

    wordlist = nltk.FreqDist(all_words)
    word_features = wordlist.keys()

    return word_features

    def extract_features(tweet):
    tweet_words=set(tweet)
    features=
    for word in word_features:
    features['contains(%s)' % word]=(word in tweet_words)
    return features

    trainingFeatures=nltk.classify.apply_features(extract_features,preprocessedTrainingSet)

    NBayesClassifier=nltk.NaiveBayesClassifier.train(trainingFeatures)



    NBResultLabels = [NBayesClassifier.classify(extract_features(tweet[0])) for tweet in preprocessedTestSet]

    if NBResultLabels.count('positive') > NBResultLabels.count('negative'):
    print("Overall Positive Sentiment")
    print("Positive Sentiment Percentage = " + str(100*NBResultLabels.count('positive')/len(NBResultLabels)) + "%")
    else:
    print("Overall Negative Sentiment")
    print("Negative Sentiment Percentage = " + str(100*NBResultLabels.count('negative')/len(NBResultLabels)) + "%")

    accuracy = nltk.classify.util.accuracy(NBayesClassifier, preprocessedTestSet)
    print(accuracy*100)


    the result should come in this way



     precision recall f1-score support

    0 0.65 1.00 0.79 17
    1 0.57 0.75 0.65 16
    2 0.33 0.06 0.10 17
    avg / total 0.52 0.60 0.51 50









    share|improve this question


























      2












      2








      2


      1






      I have to Calculate Precesion, F-measure and Recall for the Naive and Svm with sentiment classification. it return's me error as string object has no attribute copy.
      In code preprocessedTrainingSet gives the processed Training Data and preprocessedTestSet gives the processed test dataset



      word_features = buildVocabulary(preprocessedTrainingSet)
      trainingFeatures=nltk.classify.apply_features(extract_features,preprocessedTrainingSet)

      NBayesClassifier=nltk.NaiveBayesClassifier.train(trainingFeatures)
      accuracy = nltk.classify.util.accuracy(NBayesClassifier, preprocessedTestSet) #this returns error


      I am posting my whole code here:



      import csv
      import re
      from nltk.tokenize import word_tokenize
      from string import punctuation
      from nltk.corpus import stopwords
      import nltk
      import sys
      import os
      nltk.download('punkt')
      import csv
      import datetime
      from bs4 import BeautifulSoup
      import re
      import itertools
      import emoji

      def load_dict_smileys():

      return
      ":‑)":"smiley",
      ":-]":"smiley",




      def load_dict_contractions():

      return
      "ain't":"is not",
      "amn't":"am not",




      def strip_accents(text):
      if 'ø' in text or 'Ø' in text:
      #Do nothing when finding ø
      return text
      text = text.encode('ascii', 'ignore')
      text = text.decode("utf-8")
      return str(text)



      def buildTestSet():
      Test_data = []
      for line in open('Avengers.csv','r'):
      cells = line.split( "," )
      Test_data.append(cells[1])

      return Test_data


      testData = buildTestSet()


      def buildTrainingSet(corpusFile):
      corpus = []
      trainingDataSet = []
      with open(corpusFile, "rt", encoding="utf8") as csvFile:
      lineReader = csv.reader(csvFile,delimiter=',', quotechar=""")

      for row in lineReader:
      trainingDataSet.append(row)
      return trainingDataSet

      corpusFile = "trainingSet.csv"
      trainingData = buildTrainingSet(corpusFile)


      class PreProcessTweets:
      def __init__(self):
      self._stopwords = set(stopwords.words('english') + list(punctuation) + ['AT_USER','URL'])

      def processTweets(self, list_of_tweets):
      processedTweets=[]
      for tweet in list_of_tweets:

      if testD == 1:
      #print(tweet)
      processedTweets.append((self._processTweet(tweet),tweet[3]))
      else:
      processedTweets.append((self._processTweet(tweet[2]),tweet[3]))

      return processedTweets

      def _processTweet(self, tweet):
      tweet = BeautifulSoup(tweet).get_text()
      tweet = tweet.replace('x92',"'")
      tweet = ' '.join(re.sub("(@[A-Za-z0-9]+)|(#[A-Za-z0-9]+)", " ", tweet).split())
      tweet = ' '.join(re.sub("(w+://S+)", " ", tweet).split())
      tweet = ' '.join(re.sub("[.,!?:;-=]", " ", tweet).split())
      #Lower case
      tweet = tweet.lower()
      CONTRACTIONS = load_dict_contractions()
      tweet = tweet.replace("’","'")
      words = tweet.split()
      reformed = [CONTRACTIONS[word] if word in CONTRACTIONS else word for word in words]
      tweet = " ".join(reformed)
      tweet = ''.join(''.join(s)[:2] for _, s in itertools.groupby(tweet))

      SMILEY = load_dict_smileys()
      words = tweet.split()
      reformed = [SMILEY[word] if word in SMILEY else word for word in words]
      tweet = " ".join(reformed)
      #Deal with emojis
      tweet = emoji.demojize(tweet)
      #Strip accents
      tweet= strip_accents(tweet)
      tweet = tweet.replace(":"," ")
      tweet = ' '.join(tweet.split())

      return tweet

      testD = 0
      tweetProcessor = PreProcessTweets()
      preprocessedTrainingSet = tweetProcessor.processTweets(trainingData)
      testD = 1
      preprocessedTestSet = tweetProcessor.processTweets(testData)




      def buildVocabulary(preprocessedTrainingData):
      all_words = []

      for (words, sentiment) in preprocessedTrainingData:
      all_words.extend(words)

      wordlist = nltk.FreqDist(all_words)
      word_features = wordlist.keys()

      return word_features

      def extract_features(tweet):
      tweet_words=set(tweet)
      features=
      for word in word_features:
      features['contains(%s)' % word]=(word in tweet_words)
      return features

      trainingFeatures=nltk.classify.apply_features(extract_features,preprocessedTrainingSet)

      NBayesClassifier=nltk.NaiveBayesClassifier.train(trainingFeatures)



      NBResultLabels = [NBayesClassifier.classify(extract_features(tweet[0])) for tweet in preprocessedTestSet]

      if NBResultLabels.count('positive') > NBResultLabels.count('negative'):
      print("Overall Positive Sentiment")
      print("Positive Sentiment Percentage = " + str(100*NBResultLabels.count('positive')/len(NBResultLabels)) + "%")
      else:
      print("Overall Negative Sentiment")
      print("Negative Sentiment Percentage = " + str(100*NBResultLabels.count('negative')/len(NBResultLabels)) + "%")

      accuracy = nltk.classify.util.accuracy(NBayesClassifier, preprocessedTestSet)
      print(accuracy*100)


      the result should come in this way



       precision recall f1-score support

      0 0.65 1.00 0.79 17
      1 0.57 0.75 0.65 16
      2 0.33 0.06 0.10 17
      avg / total 0.52 0.60 0.51 50









      share|improve this question
















      I have to Calculate Precesion, F-measure and Recall for the Naive and Svm with sentiment classification. it return's me error as string object has no attribute copy.
      In code preprocessedTrainingSet gives the processed Training Data and preprocessedTestSet gives the processed test dataset



      word_features = buildVocabulary(preprocessedTrainingSet)
      trainingFeatures=nltk.classify.apply_features(extract_features,preprocessedTrainingSet)

      NBayesClassifier=nltk.NaiveBayesClassifier.train(trainingFeatures)
      accuracy = nltk.classify.util.accuracy(NBayesClassifier, preprocessedTestSet) #this returns error


      I am posting my whole code here:



      import csv
      import re
      from nltk.tokenize import word_tokenize
      from string import punctuation
      from nltk.corpus import stopwords
      import nltk
      import sys
      import os
      nltk.download('punkt')
      import csv
      import datetime
      from bs4 import BeautifulSoup
      import re
      import itertools
      import emoji

      def load_dict_smileys():

      return
      ":‑)":"smiley",
      ":-]":"smiley",




      def load_dict_contractions():

      return
      "ain't":"is not",
      "amn't":"am not",




      def strip_accents(text):
      if 'ø' in text or 'Ø' in text:
      #Do nothing when finding ø
      return text
      text = text.encode('ascii', 'ignore')
      text = text.decode("utf-8")
      return str(text)



      def buildTestSet():
      Test_data = []
      for line in open('Avengers.csv','r'):
      cells = line.split( "," )
      Test_data.append(cells[1])

      return Test_data


      testData = buildTestSet()


      def buildTrainingSet(corpusFile):
      corpus = []
      trainingDataSet = []
      with open(corpusFile, "rt", encoding="utf8") as csvFile:
      lineReader = csv.reader(csvFile,delimiter=',', quotechar=""")

      for row in lineReader:
      trainingDataSet.append(row)
      return trainingDataSet

      corpusFile = "trainingSet.csv"
      trainingData = buildTrainingSet(corpusFile)


      class PreProcessTweets:
      def __init__(self):
      self._stopwords = set(stopwords.words('english') + list(punctuation) + ['AT_USER','URL'])

      def processTweets(self, list_of_tweets):
      processedTweets=[]
      for tweet in list_of_tweets:

      if testD == 1:
      #print(tweet)
      processedTweets.append((self._processTweet(tweet),tweet[3]))
      else:
      processedTweets.append((self._processTweet(tweet[2]),tweet[3]))

      return processedTweets

      def _processTweet(self, tweet):
      tweet = BeautifulSoup(tweet).get_text()
      tweet = tweet.replace('x92',"'")
      tweet = ' '.join(re.sub("(@[A-Za-z0-9]+)|(#[A-Za-z0-9]+)", " ", tweet).split())
      tweet = ' '.join(re.sub("(w+://S+)", " ", tweet).split())
      tweet = ' '.join(re.sub("[.,!?:;-=]", " ", tweet).split())
      #Lower case
      tweet = tweet.lower()
      CONTRACTIONS = load_dict_contractions()
      tweet = tweet.replace("’","'")
      words = tweet.split()
      reformed = [CONTRACTIONS[word] if word in CONTRACTIONS else word for word in words]
      tweet = " ".join(reformed)
      tweet = ''.join(''.join(s)[:2] for _, s in itertools.groupby(tweet))

      SMILEY = load_dict_smileys()
      words = tweet.split()
      reformed = [SMILEY[word] if word in SMILEY else word for word in words]
      tweet = " ".join(reformed)
      #Deal with emojis
      tweet = emoji.demojize(tweet)
      #Strip accents
      tweet= strip_accents(tweet)
      tweet = tweet.replace(":"," ")
      tweet = ' '.join(tweet.split())

      return tweet

      testD = 0
      tweetProcessor = PreProcessTweets()
      preprocessedTrainingSet = tweetProcessor.processTweets(trainingData)
      testD = 1
      preprocessedTestSet = tweetProcessor.processTweets(testData)




      def buildVocabulary(preprocessedTrainingData):
      all_words = []

      for (words, sentiment) in preprocessedTrainingData:
      all_words.extend(words)

      wordlist = nltk.FreqDist(all_words)
      word_features = wordlist.keys()

      return word_features

      def extract_features(tweet):
      tweet_words=set(tweet)
      features=
      for word in word_features:
      features['contains(%s)' % word]=(word in tweet_words)
      return features

      trainingFeatures=nltk.classify.apply_features(extract_features,preprocessedTrainingSet)

      NBayesClassifier=nltk.NaiveBayesClassifier.train(trainingFeatures)



      NBResultLabels = [NBayesClassifier.classify(extract_features(tweet[0])) for tweet in preprocessedTestSet]

      if NBResultLabels.count('positive') > NBResultLabels.count('negative'):
      print("Overall Positive Sentiment")
      print("Positive Sentiment Percentage = " + str(100*NBResultLabels.count('positive')/len(NBResultLabels)) + "%")
      else:
      print("Overall Negative Sentiment")
      print("Negative Sentiment Percentage = " + str(100*NBResultLabels.count('negative')/len(NBResultLabels)) + "%")

      accuracy = nltk.classify.util.accuracy(NBayesClassifier, preprocessedTestSet)
      print(accuracy*100)


      the result should come in this way



       precision recall f1-score support

      0 0.65 1.00 0.79 17
      1 0.57 0.75 0.65 16
      2 0.33 0.06 0.10 17
      avg / total 0.52 0.60 0.51 50






      python-3.x nltk svm precision naivebayes






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 26 at 11:47







      Ashutosh Eve

















      asked Mar 26 at 4:56









      Ashutosh EveAshutosh Eve

      418 bronze badges




      418 bronze badges






















          0






          active

          oldest

          votes










          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55350093%2fhow-to-calculate-f-measure-precesion-recall-for-naive-and-svm-nltk-erro-str%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes




          Is this question similar to what you get asked at work? Learn more about asking and sharing private information with your coworkers using Stack Overflow for Teams.







          Is this question similar to what you get asked at work? Learn more about asking and sharing private information with your coworkers using Stack Overflow for Teams.



















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55350093%2fhow-to-calculate-f-measure-precesion-recall-for-naive-and-svm-nltk-erro-str%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

          SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

          은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현