Perfect riffle shufflesRigged casino that prevents pairsSolitaire PuzzleHow to cheat at cardsThree Cards TrickFive-hand pokerRandom Shuffled Deck of CardsOptimal game of Bluff (not the wikipedia one)6 Cards, Top to Bottom98 Cards: Optimal Strategy with Rule of Ten'sThe magic trick

Is there a minimum amount of electricity that can be fed back into the grid?

Chilling juice in copper vessel

Soda water first stored in refrigerator and then outside

I'm feeling like my character doesn't fit the campaign

How did the IEC decide to create kibibytes?

How do I check that users don't write down their passwords?

Did William Shakespeare hide things in his writings?

Why do airports remove/realign runways?

Why do people prefer metropolitan areas, considering monsters and villains?

How important is it for multiple POVs to run chronologically?

What is the fundamental difference between catching whales and hunting other animals?

Any way to meet code with 40.7% or 40.44% conduit fill?

Computer name naming convention for security

Can you create a free-floating MASYU puzzle?

Why does mean tend be more stable in different samples than median?

How did Captain Marvel do this without dying?

How to deal with a Murder Hobo Paladin?

Better random (unique) file name

Machine Learning Golf: Multiplication

An easy way to solve this limit of a sum?

How to find the version of extensions used on a Joomla website without access to the backend?

Why do most airliners have underwing engines, while business jets have rear-mounted engines?

Do grungs have a written language?

Bringing coumarin-containing liquor into the USA



Perfect riffle shuffles


Rigged casino that prevents pairsSolitaire PuzzleHow to cheat at cardsThree Cards TrickFive-hand pokerRandom Shuffled Deck of CardsOptimal game of Bluff (not the wikipedia one)6 Cards, Top to Bottom98 Cards: Optimal Strategy with Rule of Ten'sThe magic trick






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








10












$begingroup$


Take a deck of cards (with indexed position from 1 (top) to 52 (bottom)) and perform a perfect riffle shuffle, such that the top card (1) is still on top and the bottom (52) is still on the bottom.



Amazingly, if you perform 8 such riffle shuffles you will return to where you started.



Obviously, cards 1 and 52 do not change position. Most of the cards will go through some cycle and land back where they started only after 8 riffles.



But two cards will simply swap position back and forth each shuffle.




What are they?




Bonus question:




If you throw in the two jokers, you will have 54 cards. How many riffle shuffles will it take to get this deck back to the starting positions?











share|improve this question









$endgroup$


















    10












    $begingroup$


    Take a deck of cards (with indexed position from 1 (top) to 52 (bottom)) and perform a perfect riffle shuffle, such that the top card (1) is still on top and the bottom (52) is still on the bottom.



    Amazingly, if you perform 8 such riffle shuffles you will return to where you started.



    Obviously, cards 1 and 52 do not change position. Most of the cards will go through some cycle and land back where they started only after 8 riffles.



    But two cards will simply swap position back and forth each shuffle.




    What are they?




    Bonus question:




    If you throw in the two jokers, you will have 54 cards. How many riffle shuffles will it take to get this deck back to the starting positions?











    share|improve this question









    $endgroup$














      10












      10








      10





      $begingroup$


      Take a deck of cards (with indexed position from 1 (top) to 52 (bottom)) and perform a perfect riffle shuffle, such that the top card (1) is still on top and the bottom (52) is still on the bottom.



      Amazingly, if you perform 8 such riffle shuffles you will return to where you started.



      Obviously, cards 1 and 52 do not change position. Most of the cards will go through some cycle and land back where they started only after 8 riffles.



      But two cards will simply swap position back and forth each shuffle.




      What are they?




      Bonus question:




      If you throw in the two jokers, you will have 54 cards. How many riffle shuffles will it take to get this deck back to the starting positions?











      share|improve this question









      $endgroup$




      Take a deck of cards (with indexed position from 1 (top) to 52 (bottom)) and perform a perfect riffle shuffle, such that the top card (1) is still on top and the bottom (52) is still on the bottom.



      Amazingly, if you perform 8 such riffle shuffles you will return to where you started.



      Obviously, cards 1 and 52 do not change position. Most of the cards will go through some cycle and land back where they started only after 8 riffles.



      But two cards will simply swap position back and forth each shuffle.




      What are they?




      Bonus question:




      If you throw in the two jokers, you will have 54 cards. How many riffle shuffles will it take to get this deck back to the starting positions?








      cards






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Mar 25 at 18:46









      Dr XorileDr Xorile

      14.4k3 gold badges31 silver badges85 bronze badges




      14.4k3 gold badges31 silver badges85 bronze badges




















          1 Answer
          1






          active

          oldest

          votes


















          17












          $begingroup$


          Cards in the top half besides 1 always increase from $k$ to $2k-1$ (because it will be the first card of the $k$th pair). Cards in the bottom half besides 52 always decrease from $m$ to $2(m-26)$ (because it will be the second card of the $(m-26)$th pair). Then to return to the original position after two shuffles, the cards must swap between the halves.


          If $k$ is the position of the card in the top half, then after one shuffle it will move to position $m=2k-1$. If it is now in the bottom half ($m>26$), it will move to position $2(m-26)=2(2k-1-26)=4k-54$ after the second shuffle. To have returned to its initial position, we must have $4k-54=kiff3k=54iff k=18$, so that $m=2k-1=35>26$ holds. The two cards are at positions $boxed18text and 35$.




          Bonus:




          It can be shown using group theory that $k$ shuffles will restore a deck of size $n$ if $n-1$ divides $2^k-1$. The sequence of least such $k$ for every $n$ is in the OEIS, which gives the answer for 54 cards as $boxed52text shuffles$.







          share|improve this answer









          $endgroup$








          • 1




            $begingroup$
            These answers are the reason i feel guilty for not going back to continues learning.
            $endgroup$
            – Alex
            Mar 25 at 19:32






          • 2




            $begingroup$
            I got a PhD and I still can't put together answers like these! xD
            $endgroup$
            – Somebody
            Mar 26 at 16:30













          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "559"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f81023%2fperfect-riffle-shuffles%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          17












          $begingroup$


          Cards in the top half besides 1 always increase from $k$ to $2k-1$ (because it will be the first card of the $k$th pair). Cards in the bottom half besides 52 always decrease from $m$ to $2(m-26)$ (because it will be the second card of the $(m-26)$th pair). Then to return to the original position after two shuffles, the cards must swap between the halves.


          If $k$ is the position of the card in the top half, then after one shuffle it will move to position $m=2k-1$. If it is now in the bottom half ($m>26$), it will move to position $2(m-26)=2(2k-1-26)=4k-54$ after the second shuffle. To have returned to its initial position, we must have $4k-54=kiff3k=54iff k=18$, so that $m=2k-1=35>26$ holds. The two cards are at positions $boxed18text and 35$.




          Bonus:




          It can be shown using group theory that $k$ shuffles will restore a deck of size $n$ if $n-1$ divides $2^k-1$. The sequence of least such $k$ for every $n$ is in the OEIS, which gives the answer for 54 cards as $boxed52text shuffles$.







          share|improve this answer









          $endgroup$








          • 1




            $begingroup$
            These answers are the reason i feel guilty for not going back to continues learning.
            $endgroup$
            – Alex
            Mar 25 at 19:32






          • 2




            $begingroup$
            I got a PhD and I still can't put together answers like these! xD
            $endgroup$
            – Somebody
            Mar 26 at 16:30















          17












          $begingroup$


          Cards in the top half besides 1 always increase from $k$ to $2k-1$ (because it will be the first card of the $k$th pair). Cards in the bottom half besides 52 always decrease from $m$ to $2(m-26)$ (because it will be the second card of the $(m-26)$th pair). Then to return to the original position after two shuffles, the cards must swap between the halves.


          If $k$ is the position of the card in the top half, then after one shuffle it will move to position $m=2k-1$. If it is now in the bottom half ($m>26$), it will move to position $2(m-26)=2(2k-1-26)=4k-54$ after the second shuffle. To have returned to its initial position, we must have $4k-54=kiff3k=54iff k=18$, so that $m=2k-1=35>26$ holds. The two cards are at positions $boxed18text and 35$.




          Bonus:




          It can be shown using group theory that $k$ shuffles will restore a deck of size $n$ if $n-1$ divides $2^k-1$. The sequence of least such $k$ for every $n$ is in the OEIS, which gives the answer for 54 cards as $boxed52text shuffles$.







          share|improve this answer









          $endgroup$








          • 1




            $begingroup$
            These answers are the reason i feel guilty for not going back to continues learning.
            $endgroup$
            – Alex
            Mar 25 at 19:32






          • 2




            $begingroup$
            I got a PhD and I still can't put together answers like these! xD
            $endgroup$
            – Somebody
            Mar 26 at 16:30













          17












          17








          17





          $begingroup$


          Cards in the top half besides 1 always increase from $k$ to $2k-1$ (because it will be the first card of the $k$th pair). Cards in the bottom half besides 52 always decrease from $m$ to $2(m-26)$ (because it will be the second card of the $(m-26)$th pair). Then to return to the original position after two shuffles, the cards must swap between the halves.


          If $k$ is the position of the card in the top half, then after one shuffle it will move to position $m=2k-1$. If it is now in the bottom half ($m>26$), it will move to position $2(m-26)=2(2k-1-26)=4k-54$ after the second shuffle. To have returned to its initial position, we must have $4k-54=kiff3k=54iff k=18$, so that $m=2k-1=35>26$ holds. The two cards are at positions $boxed18text and 35$.




          Bonus:




          It can be shown using group theory that $k$ shuffles will restore a deck of size $n$ if $n-1$ divides $2^k-1$. The sequence of least such $k$ for every $n$ is in the OEIS, which gives the answer for 54 cards as $boxed52text shuffles$.







          share|improve this answer









          $endgroup$




          Cards in the top half besides 1 always increase from $k$ to $2k-1$ (because it will be the first card of the $k$th pair). Cards in the bottom half besides 52 always decrease from $m$ to $2(m-26)$ (because it will be the second card of the $(m-26)$th pair). Then to return to the original position after two shuffles, the cards must swap between the halves.


          If $k$ is the position of the card in the top half, then after one shuffle it will move to position $m=2k-1$. If it is now in the bottom half ($m>26$), it will move to position $2(m-26)=2(2k-1-26)=4k-54$ after the second shuffle. To have returned to its initial position, we must have $4k-54=kiff3k=54iff k=18$, so that $m=2k-1=35>26$ holds. The two cards are at positions $boxed18text and 35$.




          Bonus:




          It can be shown using group theory that $k$ shuffles will restore a deck of size $n$ if $n-1$ divides $2^k-1$. The sequence of least such $k$ for every $n$ is in the OEIS, which gives the answer for 54 cards as $boxed52text shuffles$.








          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Mar 25 at 19:12









          noednenoedne

          10.6k1 gold badge29 silver badges77 bronze badges




          10.6k1 gold badge29 silver badges77 bronze badges







          • 1




            $begingroup$
            These answers are the reason i feel guilty for not going back to continues learning.
            $endgroup$
            – Alex
            Mar 25 at 19:32






          • 2




            $begingroup$
            I got a PhD and I still can't put together answers like these! xD
            $endgroup$
            – Somebody
            Mar 26 at 16:30












          • 1




            $begingroup$
            These answers are the reason i feel guilty for not going back to continues learning.
            $endgroup$
            – Alex
            Mar 25 at 19:32






          • 2




            $begingroup$
            I got a PhD and I still can't put together answers like these! xD
            $endgroup$
            – Somebody
            Mar 26 at 16:30







          1




          1




          $begingroup$
          These answers are the reason i feel guilty for not going back to continues learning.
          $endgroup$
          – Alex
          Mar 25 at 19:32




          $begingroup$
          These answers are the reason i feel guilty for not going back to continues learning.
          $endgroup$
          – Alex
          Mar 25 at 19:32




          2




          2




          $begingroup$
          I got a PhD and I still can't put together answers like these! xD
          $endgroup$
          – Somebody
          Mar 26 at 16:30




          $begingroup$
          I got a PhD and I still can't put together answers like these! xD
          $endgroup$
          – Somebody
          Mar 26 at 16:30

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Puzzling Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f81023%2fperfect-riffle-shuffles%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

          Swift 4 - func physicsWorld not invoked on collision? The Next CEO of Stack OverflowHow to call Objective-C code from Swift#ifdef replacement in the Swift language@selector() in Swift?#pragma mark in Swift?Swift for loop: for index, element in array?dispatch_after - GCD in Swift?Swift Beta performance: sorting arraysSplit a String into an array in Swift?The use of Swift 3 @objc inference in Swift 4 mode is deprecated?How to optimize UITableViewCell, because my UITableView lags

          Access current req object everywhere in Node.js ExpressWhy are global variables considered bad practice? (node.js)Using req & res across functionsHow do I get the path to the current script with Node.js?What is Node.js' Connect, Express and “middleware”?Node.js w/ express error handling in callbackHow to access the GET parameters after “?” in Express?Modify Node.js req object parametersAccess “app” variable inside of ExpressJS/ConnectJS middleware?Node.js Express app - request objectAngular Http Module considered middleware?Session variables in ExpressJSAdd properties to the req object in expressjs with Typescript