Can the discrete variable be a negative number?Levels of measurement and discrete vs continuous random variablesClustering a dataset with both discrete and continuous variablesSemi-discrete probability distributionDiscrete uniform random variable(?) taking all rational values in a closed intervalCorrelation or clustering of continuous score and discrete variable statesIs my random variable discrete or continuous?Which term describes a “stepwise” variable?When does a continuous distribution become a discrete one?MCMC: How to choose an efficient proposal distribution with continuous and discrete variablesLevels of measurement and discrete vs continuous random variablesProbability density function for continuous random variable
Fantasy Military Arms and Armor: the Dwarven Grand Armory
Why there is no wireless switch?
Project Euler Problem 45
Draw the ☣ (Biohazard Symbol)
Python, Iterate through a list sending batches of 100 records at a time to an API, then appending results to another list
SQL Always On COPY ONLY backups - what's the point if I cant restore the AG from these backups?
Why are some hotels asking you to book through Booking.com instead of matching the price at the front desk?
Infinitely many primes
What's this constructed number's starter?
How to calculate the power level of a Commander deck?
Could this estimate of the size and mass of the Chicxulub Impactor be accurate?
French equivalent of "my cup of tea"
Can you create water inside someone's mouth?
Why did Tony's Arc Reactor do this?
What exactly is Apple Cider
Why would one hemisphere of a planet be very mountainous while the other is flat?
How do I make my fill-in-the-blank exercise more obvious?
Male viewpoint in an erotic novel
What quests do you need to stop at before you make an enemy of a faction for each faction?
Is Sanskrit really the mother of all languages?
Looking for the comic book where Spider-Man was [mistakenly] addressed as Super-Man
Pronounceable encrypted text
Did the US Climate Reference Network Show No New Warming Since 2005 in the US?
What can we do about our 9 month old putting fingers down his throat?
Can the discrete variable be a negative number?
Levels of measurement and discrete vs continuous random variablesClustering a dataset with both discrete and continuous variablesSemi-discrete probability distributionDiscrete uniform random variable(?) taking all rational values in a closed intervalCorrelation or clustering of continuous score and discrete variable statesIs my random variable discrete or continuous?Which term describes a “stepwise” variable?When does a continuous distribution become a discrete one?MCMC: How to choose an efficient proposal distribution with continuous and discrete variablesLevels of measurement and discrete vs continuous random variablesProbability density function for continuous random variable
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
I read in a book "An Introduction to Statistical Concepts [3 ed.] p.8):
A numerical variable is a quantitative variable. Numerical variables can further be classified as either discrete or continuous. A discrete variable is defined as a variable that can only take on certain values. For example, the number of children in a family can only take on certain values. Many values are not possible, such as negative values (e.g., the Joneses cannot have −2 children) or decimal values (e.g., the Smiths cannot have 2.2 children). In contrast, a continuous variable is defined as a variable that can take on any value within a certain range given a precise enough measurement instrument.
Question: Does this mean that a discrete variable cannot be a negative number? If a discrete variable cannot be a negative number then please explain why?
distributions discrete-data
$endgroup$
add a comment |
$begingroup$
I read in a book "An Introduction to Statistical Concepts [3 ed.] p.8):
A numerical variable is a quantitative variable. Numerical variables can further be classified as either discrete or continuous. A discrete variable is defined as a variable that can only take on certain values. For example, the number of children in a family can only take on certain values. Many values are not possible, such as negative values (e.g., the Joneses cannot have −2 children) or decimal values (e.g., the Smiths cannot have 2.2 children). In contrast, a continuous variable is defined as a variable that can take on any value within a certain range given a precise enough measurement instrument.
Question: Does this mean that a discrete variable cannot be a negative number? If a discrete variable cannot be a negative number then please explain why?
distributions discrete-data
$endgroup$
2
$begingroup$
consider "$X_t$" is "number of goals scored in match $t$" and let $Y_t=X_t-X_t-1$. (i.e. the change in goals scored from the previous game). $Y_t$ is discrete but can clearly be negative.
$endgroup$
– Glen_b♦
Mar 28 at 2:20
1
$begingroup$
I guess in means in particular contexts certain values aren't possible. But in general a discrete variable could be negative or a decimal, irrational, etc etc.
$endgroup$
– innisfree
Mar 28 at 8:27
1
$begingroup$
@Glen_b: Or the more common "goal difference" defined as goals scored by one team versus goals scored by their opponent. The sign of this difference defines the winner of the game.
$endgroup$
– MSalters
Mar 28 at 11:30
$begingroup$
If I toss a coin 5 times the possible fractions of heads are 0/5, 1/5, ..., 4/5, 5/5 which are just as discrete as the corresponding counts 0 to 5.
$endgroup$
– Nick Cox
Mar 29 at 0:13
$begingroup$
The quoted definition is out-and-out wrong: it characterizes variables supported on a proper subset of the real numbers, not discrete variables.
$endgroup$
– whuber♦
Mar 29 at 14:33
add a comment |
$begingroup$
I read in a book "An Introduction to Statistical Concepts [3 ed.] p.8):
A numerical variable is a quantitative variable. Numerical variables can further be classified as either discrete or continuous. A discrete variable is defined as a variable that can only take on certain values. For example, the number of children in a family can only take on certain values. Many values are not possible, such as negative values (e.g., the Joneses cannot have −2 children) or decimal values (e.g., the Smiths cannot have 2.2 children). In contrast, a continuous variable is defined as a variable that can take on any value within a certain range given a precise enough measurement instrument.
Question: Does this mean that a discrete variable cannot be a negative number? If a discrete variable cannot be a negative number then please explain why?
distributions discrete-data
$endgroup$
I read in a book "An Introduction to Statistical Concepts [3 ed.] p.8):
A numerical variable is a quantitative variable. Numerical variables can further be classified as either discrete or continuous. A discrete variable is defined as a variable that can only take on certain values. For example, the number of children in a family can only take on certain values. Many values are not possible, such as negative values (e.g., the Joneses cannot have −2 children) or decimal values (e.g., the Smiths cannot have 2.2 children). In contrast, a continuous variable is defined as a variable that can take on any value within a certain range given a precise enough measurement instrument.
Question: Does this mean that a discrete variable cannot be a negative number? If a discrete variable cannot be a negative number then please explain why?
distributions discrete-data
distributions discrete-data
edited Mar 28 at 2:20
Sycorax
47k15 gold badges122 silver badges221 bronze badges
47k15 gold badges122 silver badges221 bronze badges
asked Mar 28 at 2:03
vasili111vasili111
2601 gold badge3 silver badges14 bronze badges
2601 gold badge3 silver badges14 bronze badges
2
$begingroup$
consider "$X_t$" is "number of goals scored in match $t$" and let $Y_t=X_t-X_t-1$. (i.e. the change in goals scored from the previous game). $Y_t$ is discrete but can clearly be negative.
$endgroup$
– Glen_b♦
Mar 28 at 2:20
1
$begingroup$
I guess in means in particular contexts certain values aren't possible. But in general a discrete variable could be negative or a decimal, irrational, etc etc.
$endgroup$
– innisfree
Mar 28 at 8:27
1
$begingroup$
@Glen_b: Or the more common "goal difference" defined as goals scored by one team versus goals scored by their opponent. The sign of this difference defines the winner of the game.
$endgroup$
– MSalters
Mar 28 at 11:30
$begingroup$
If I toss a coin 5 times the possible fractions of heads are 0/5, 1/5, ..., 4/5, 5/5 which are just as discrete as the corresponding counts 0 to 5.
$endgroup$
– Nick Cox
Mar 29 at 0:13
$begingroup$
The quoted definition is out-and-out wrong: it characterizes variables supported on a proper subset of the real numbers, not discrete variables.
$endgroup$
– whuber♦
Mar 29 at 14:33
add a comment |
2
$begingroup$
consider "$X_t$" is "number of goals scored in match $t$" and let $Y_t=X_t-X_t-1$. (i.e. the change in goals scored from the previous game). $Y_t$ is discrete but can clearly be negative.
$endgroup$
– Glen_b♦
Mar 28 at 2:20
1
$begingroup$
I guess in means in particular contexts certain values aren't possible. But in general a discrete variable could be negative or a decimal, irrational, etc etc.
$endgroup$
– innisfree
Mar 28 at 8:27
1
$begingroup$
@Glen_b: Or the more common "goal difference" defined as goals scored by one team versus goals scored by their opponent. The sign of this difference defines the winner of the game.
$endgroup$
– MSalters
Mar 28 at 11:30
$begingroup$
If I toss a coin 5 times the possible fractions of heads are 0/5, 1/5, ..., 4/5, 5/5 which are just as discrete as the corresponding counts 0 to 5.
$endgroup$
– Nick Cox
Mar 29 at 0:13
$begingroup$
The quoted definition is out-and-out wrong: it characterizes variables supported on a proper subset of the real numbers, not discrete variables.
$endgroup$
– whuber♦
Mar 29 at 14:33
2
2
$begingroup$
consider "$X_t$" is "number of goals scored in match $t$" and let $Y_t=X_t-X_t-1$. (i.e. the change in goals scored from the previous game). $Y_t$ is discrete but can clearly be negative.
$endgroup$
– Glen_b♦
Mar 28 at 2:20
$begingroup$
consider "$X_t$" is "number of goals scored in match $t$" and let $Y_t=X_t-X_t-1$. (i.e. the change in goals scored from the previous game). $Y_t$ is discrete but can clearly be negative.
$endgroup$
– Glen_b♦
Mar 28 at 2:20
1
1
$begingroup$
I guess in means in particular contexts certain values aren't possible. But in general a discrete variable could be negative or a decimal, irrational, etc etc.
$endgroup$
– innisfree
Mar 28 at 8:27
$begingroup$
I guess in means in particular contexts certain values aren't possible. But in general a discrete variable could be negative or a decimal, irrational, etc etc.
$endgroup$
– innisfree
Mar 28 at 8:27
1
1
$begingroup$
@Glen_b: Or the more common "goal difference" defined as goals scored by one team versus goals scored by their opponent. The sign of this difference defines the winner of the game.
$endgroup$
– MSalters
Mar 28 at 11:30
$begingroup$
@Glen_b: Or the more common "goal difference" defined as goals scored by one team versus goals scored by their opponent. The sign of this difference defines the winner of the game.
$endgroup$
– MSalters
Mar 28 at 11:30
$begingroup$
If I toss a coin 5 times the possible fractions of heads are 0/5, 1/5, ..., 4/5, 5/5 which are just as discrete as the corresponding counts 0 to 5.
$endgroup$
– Nick Cox
Mar 29 at 0:13
$begingroup$
If I toss a coin 5 times the possible fractions of heads are 0/5, 1/5, ..., 4/5, 5/5 which are just as discrete as the corresponding counts 0 to 5.
$endgroup$
– Nick Cox
Mar 29 at 0:13
$begingroup$
The quoted definition is out-and-out wrong: it characterizes variables supported on a proper subset of the real numbers, not discrete variables.
$endgroup$
– whuber♦
Mar 29 at 14:33
$begingroup$
The quoted definition is out-and-out wrong: it characterizes variables supported on a proper subset of the real numbers, not discrete variables.
$endgroup$
– whuber♦
Mar 29 at 14:33
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your intuition is correct -- a discrete variable can take on negative values.
The example is just an example: a person can't have $-2$ children, but the difference in scores between Home and Away sports teams can be $-2$ when the Home team is behind by two points.
Discrete variables with negative values exist all over the place. Two prominent examples:
- Rademacher distribution
- Skellam distribution
$endgroup$
2
$begingroup$
(+1) To mention a somewhat simpler example: In certain sports (e.g. association football, ice hockey, Gaelic football, etc.) the goal difference between the home team and the visiting team can naturally modelled as a Skellam distribution.
$endgroup$
– usεr11852
Mar 28 at 23:29
1
$begingroup$
@usεr11852 Yes, I should have turned to my knowledge of Gaelic football. ;-) Your point is well taken and I've revised the example.
$endgroup$
– Sycorax
Mar 28 at 23:37
add a comment |
$begingroup$
The difference between continuous and discrete variables is not a mathematical essential one like the difference between natural and real numbers. It's just a matter of practicality: we use different tools to address each one because we are interested on answering different questions.
Basically, in discrete variables we are interested in the frequency of each value, but in continuous variables we are just interested in frequency of intervals. Then, we treat as continuous variables the variables when two or more cases getting the same value is just an anecdote - unlikely and/or uninteresting - and we model it as being able to get any real value in an interval. Otherwise, we model the variable as being a discrete variable with just a finite or numerable possible values.
For example: monetary quantities (prices, income, GDP and so) are usually modeled as continuous variables. However, they actually can only take a numerable set of values, because we just record monetary values up to some precision - usually 1 cent.
Some Euro area countries previous currency were valued less than 1 euro cent (e.g. Spanish peseta and Italian lira). In those countries cents had fallen in disuse long ago and all prices and wages were natural numbers, but when Euro was introduced they got a couple of decimal figures. Sometimes my students say that prices in pesetas were discrete variables but prices in euros are continuous ones, but that's plainly wrong because we are interested in the same questions and use the same statistical tools for both.
In summary and returning to the question: The difference between discrete an continuous variables are just a matter of convenience and you can treat a variable as discrete even if it takes negative values. You just need it to take few enough values to be interested in frequency of each one.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "65"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f399832%2fcan-the-discrete-variable-be-a-negative-number%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your intuition is correct -- a discrete variable can take on negative values.
The example is just an example: a person can't have $-2$ children, but the difference in scores between Home and Away sports teams can be $-2$ when the Home team is behind by two points.
Discrete variables with negative values exist all over the place. Two prominent examples:
- Rademacher distribution
- Skellam distribution
$endgroup$
2
$begingroup$
(+1) To mention a somewhat simpler example: In certain sports (e.g. association football, ice hockey, Gaelic football, etc.) the goal difference between the home team and the visiting team can naturally modelled as a Skellam distribution.
$endgroup$
– usεr11852
Mar 28 at 23:29
1
$begingroup$
@usεr11852 Yes, I should have turned to my knowledge of Gaelic football. ;-) Your point is well taken and I've revised the example.
$endgroup$
– Sycorax
Mar 28 at 23:37
add a comment |
$begingroup$
Your intuition is correct -- a discrete variable can take on negative values.
The example is just an example: a person can't have $-2$ children, but the difference in scores between Home and Away sports teams can be $-2$ when the Home team is behind by two points.
Discrete variables with negative values exist all over the place. Two prominent examples:
- Rademacher distribution
- Skellam distribution
$endgroup$
2
$begingroup$
(+1) To mention a somewhat simpler example: In certain sports (e.g. association football, ice hockey, Gaelic football, etc.) the goal difference between the home team and the visiting team can naturally modelled as a Skellam distribution.
$endgroup$
– usεr11852
Mar 28 at 23:29
1
$begingroup$
@usεr11852 Yes, I should have turned to my knowledge of Gaelic football. ;-) Your point is well taken and I've revised the example.
$endgroup$
– Sycorax
Mar 28 at 23:37
add a comment |
$begingroup$
Your intuition is correct -- a discrete variable can take on negative values.
The example is just an example: a person can't have $-2$ children, but the difference in scores between Home and Away sports teams can be $-2$ when the Home team is behind by two points.
Discrete variables with negative values exist all over the place. Two prominent examples:
- Rademacher distribution
- Skellam distribution
$endgroup$
Your intuition is correct -- a discrete variable can take on negative values.
The example is just an example: a person can't have $-2$ children, but the difference in scores between Home and Away sports teams can be $-2$ when the Home team is behind by two points.
Discrete variables with negative values exist all over the place. Two prominent examples:
- Rademacher distribution
- Skellam distribution
edited Mar 28 at 23:36
answered Mar 28 at 2:16
SycoraxSycorax
47k15 gold badges122 silver badges221 bronze badges
47k15 gold badges122 silver badges221 bronze badges
2
$begingroup$
(+1) To mention a somewhat simpler example: In certain sports (e.g. association football, ice hockey, Gaelic football, etc.) the goal difference between the home team and the visiting team can naturally modelled as a Skellam distribution.
$endgroup$
– usεr11852
Mar 28 at 23:29
1
$begingroup$
@usεr11852 Yes, I should have turned to my knowledge of Gaelic football. ;-) Your point is well taken and I've revised the example.
$endgroup$
– Sycorax
Mar 28 at 23:37
add a comment |
2
$begingroup$
(+1) To mention a somewhat simpler example: In certain sports (e.g. association football, ice hockey, Gaelic football, etc.) the goal difference between the home team and the visiting team can naturally modelled as a Skellam distribution.
$endgroup$
– usεr11852
Mar 28 at 23:29
1
$begingroup$
@usεr11852 Yes, I should have turned to my knowledge of Gaelic football. ;-) Your point is well taken and I've revised the example.
$endgroup$
– Sycorax
Mar 28 at 23:37
2
2
$begingroup$
(+1) To mention a somewhat simpler example: In certain sports (e.g. association football, ice hockey, Gaelic football, etc.) the goal difference between the home team and the visiting team can naturally modelled as a Skellam distribution.
$endgroup$
– usεr11852
Mar 28 at 23:29
$begingroup$
(+1) To mention a somewhat simpler example: In certain sports (e.g. association football, ice hockey, Gaelic football, etc.) the goal difference between the home team and the visiting team can naturally modelled as a Skellam distribution.
$endgroup$
– usεr11852
Mar 28 at 23:29
1
1
$begingroup$
@usεr11852 Yes, I should have turned to my knowledge of Gaelic football. ;-) Your point is well taken and I've revised the example.
$endgroup$
– Sycorax
Mar 28 at 23:37
$begingroup$
@usεr11852 Yes, I should have turned to my knowledge of Gaelic football. ;-) Your point is well taken and I've revised the example.
$endgroup$
– Sycorax
Mar 28 at 23:37
add a comment |
$begingroup$
The difference between continuous and discrete variables is not a mathematical essential one like the difference between natural and real numbers. It's just a matter of practicality: we use different tools to address each one because we are interested on answering different questions.
Basically, in discrete variables we are interested in the frequency of each value, but in continuous variables we are just interested in frequency of intervals. Then, we treat as continuous variables the variables when two or more cases getting the same value is just an anecdote - unlikely and/or uninteresting - and we model it as being able to get any real value in an interval. Otherwise, we model the variable as being a discrete variable with just a finite or numerable possible values.
For example: monetary quantities (prices, income, GDP and so) are usually modeled as continuous variables. However, they actually can only take a numerable set of values, because we just record monetary values up to some precision - usually 1 cent.
Some Euro area countries previous currency were valued less than 1 euro cent (e.g. Spanish peseta and Italian lira). In those countries cents had fallen in disuse long ago and all prices and wages were natural numbers, but when Euro was introduced they got a couple of decimal figures. Sometimes my students say that prices in pesetas were discrete variables but prices in euros are continuous ones, but that's plainly wrong because we are interested in the same questions and use the same statistical tools for both.
In summary and returning to the question: The difference between discrete an continuous variables are just a matter of convenience and you can treat a variable as discrete even if it takes negative values. You just need it to take few enough values to be interested in frequency of each one.
$endgroup$
add a comment |
$begingroup$
The difference between continuous and discrete variables is not a mathematical essential one like the difference between natural and real numbers. It's just a matter of practicality: we use different tools to address each one because we are interested on answering different questions.
Basically, in discrete variables we are interested in the frequency of each value, but in continuous variables we are just interested in frequency of intervals. Then, we treat as continuous variables the variables when two or more cases getting the same value is just an anecdote - unlikely and/or uninteresting - and we model it as being able to get any real value in an interval. Otherwise, we model the variable as being a discrete variable with just a finite or numerable possible values.
For example: monetary quantities (prices, income, GDP and so) are usually modeled as continuous variables. However, they actually can only take a numerable set of values, because we just record monetary values up to some precision - usually 1 cent.
Some Euro area countries previous currency were valued less than 1 euro cent (e.g. Spanish peseta and Italian lira). In those countries cents had fallen in disuse long ago and all prices and wages were natural numbers, but when Euro was introduced they got a couple of decimal figures. Sometimes my students say that prices in pesetas were discrete variables but prices in euros are continuous ones, but that's plainly wrong because we are interested in the same questions and use the same statistical tools for both.
In summary and returning to the question: The difference between discrete an continuous variables are just a matter of convenience and you can treat a variable as discrete even if it takes negative values. You just need it to take few enough values to be interested in frequency of each one.
$endgroup$
add a comment |
$begingroup$
The difference between continuous and discrete variables is not a mathematical essential one like the difference between natural and real numbers. It's just a matter of practicality: we use different tools to address each one because we are interested on answering different questions.
Basically, in discrete variables we are interested in the frequency of each value, but in continuous variables we are just interested in frequency of intervals. Then, we treat as continuous variables the variables when two or more cases getting the same value is just an anecdote - unlikely and/or uninteresting - and we model it as being able to get any real value in an interval. Otherwise, we model the variable as being a discrete variable with just a finite or numerable possible values.
For example: monetary quantities (prices, income, GDP and so) are usually modeled as continuous variables. However, they actually can only take a numerable set of values, because we just record monetary values up to some precision - usually 1 cent.
Some Euro area countries previous currency were valued less than 1 euro cent (e.g. Spanish peseta and Italian lira). In those countries cents had fallen in disuse long ago and all prices and wages were natural numbers, but when Euro was introduced they got a couple of decimal figures. Sometimes my students say that prices in pesetas were discrete variables but prices in euros are continuous ones, but that's plainly wrong because we are interested in the same questions and use the same statistical tools for both.
In summary and returning to the question: The difference between discrete an continuous variables are just a matter of convenience and you can treat a variable as discrete even if it takes negative values. You just need it to take few enough values to be interested in frequency of each one.
$endgroup$
The difference between continuous and discrete variables is not a mathematical essential one like the difference between natural and real numbers. It's just a matter of practicality: we use different tools to address each one because we are interested on answering different questions.
Basically, in discrete variables we are interested in the frequency of each value, but in continuous variables we are just interested in frequency of intervals. Then, we treat as continuous variables the variables when two or more cases getting the same value is just an anecdote - unlikely and/or uninteresting - and we model it as being able to get any real value in an interval. Otherwise, we model the variable as being a discrete variable with just a finite or numerable possible values.
For example: monetary quantities (prices, income, GDP and so) are usually modeled as continuous variables. However, they actually can only take a numerable set of values, because we just record monetary values up to some precision - usually 1 cent.
Some Euro area countries previous currency were valued less than 1 euro cent (e.g. Spanish peseta and Italian lira). In those countries cents had fallen in disuse long ago and all prices and wages were natural numbers, but when Euro was introduced they got a couple of decimal figures. Sometimes my students say that prices in pesetas were discrete variables but prices in euros are continuous ones, but that's plainly wrong because we are interested in the same questions and use the same statistical tools for both.
In summary and returning to the question: The difference between discrete an continuous variables are just a matter of convenience and you can treat a variable as discrete even if it takes negative values. You just need it to take few enough values to be interested in frequency of each one.
answered Mar 28 at 12:00
PerePere
5,1271 gold badge9 silver badges25 bronze badges
5,1271 gold badge9 silver badges25 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f399832%2fcan-the-discrete-variable-be-a-negative-number%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
consider "$X_t$" is "number of goals scored in match $t$" and let $Y_t=X_t-X_t-1$. (i.e. the change in goals scored from the previous game). $Y_t$ is discrete but can clearly be negative.
$endgroup$
– Glen_b♦
Mar 28 at 2:20
1
$begingroup$
I guess in means in particular contexts certain values aren't possible. But in general a discrete variable could be negative or a decimal, irrational, etc etc.
$endgroup$
– innisfree
Mar 28 at 8:27
1
$begingroup$
@Glen_b: Or the more common "goal difference" defined as goals scored by one team versus goals scored by their opponent. The sign of this difference defines the winner of the game.
$endgroup$
– MSalters
Mar 28 at 11:30
$begingroup$
If I toss a coin 5 times the possible fractions of heads are 0/5, 1/5, ..., 4/5, 5/5 which are just as discrete as the corresponding counts 0 to 5.
$endgroup$
– Nick Cox
Mar 29 at 0:13
$begingroup$
The quoted definition is out-and-out wrong: it characterizes variables supported on a proper subset of the real numbers, not discrete variables.
$endgroup$
– whuber♦
Mar 29 at 14:33