What's the fastest algorithm for sorting a linked list?What is the fast way to sort singly linked list in descending orderHow to sort a linked list using an efficient algorithm, with only the list sent as parameters?What is the best way to sort link list?How can I sort a linked list in C?Parallel sorting of a singly-linked listQuicksort on Single Linked listHow can I sort a LinkedList with just the standard library?How to implement quicksort on a double-linked list of pointers?Best sorting algorithm - Partially sorted linked listWhich is faster, sorting an array of structs or sorting a list of structures C?How do I sort a list of dictionaries by a value of the dictionary?Sort a Map<Key, Value> by valuesHow to sort a list of objects based on an attribute of the objects?How do I sort a dictionary by value?Sort array of objects by string property valueHow to Sort a List<T> by a property in the objectImage Processing: Algorithm Improvement for 'Coca-Cola Can' RecognitionHow to find time complexity of an algorithmHow to pair socks from a pile efficiently?What is the optimal algorithm for the game 2048?

How to sort human readable size

Why there is a red color in right side?

How can I ping multiple IP addresses at the same time?

Why things float in space, though there is always gravity of our star is present

60's (or earlier) sci-fi short story about two spacecrafts exchanging plants for gold and thinking they got the better of the exchange

How to compute the inverse of an operation in Q#?

What preparations would Hubble have needed to return in a Shuttle?

Kelvin type connection

How are で and いう being used in this context?

How would one carboxylate CBG into its acid form, CBGA?

Is there any way to revive my Sim?

Am I legally required to provide a (GPL licensed) source code even after a project is abandoned?

Is there a polite way to ask about one's ethnicity?

Can a character learn spells from someone else's spellbook and then sell it?

I found a password with hashcat but it doesn't work

If the mass of the Earth is decreasing by sending debris in space, does its angular momentum also decrease?

sudo passwd username keeps asking for the current password

Boundaries and Buddhism

What does this Swiss black on yellow rectangular traffic sign with a symbol looking like a dart mean?

Is declining an undergraduate award which causes me discomfort appropriate?

Counterfeit checks were created for my account. How does this type of fraud work?

My student in one course asks for paid tutoring in another course. Appropriate?

Story of a Witch Boy

Why is it 出差去 and not 去出差?



What's the fastest algorithm for sorting a linked list?


What is the fast way to sort singly linked list in descending orderHow to sort a linked list using an efficient algorithm, with only the list sent as parameters?What is the best way to sort link list?How can I sort a linked list in C?Parallel sorting of a singly-linked listQuicksort on Single Linked listHow can I sort a LinkedList with just the standard library?How to implement quicksort on a double-linked list of pointers?Best sorting algorithm - Partially sorted linked listWhich is faster, sorting an array of structs or sorting a list of structures C?How do I sort a list of dictionaries by a value of the dictionary?Sort a Map<Key, Value> by valuesHow to sort a list of objects based on an attribute of the objects?How do I sort a dictionary by value?Sort array of objects by string property valueHow to Sort a List<T> by a property in the objectImage Processing: Algorithm Improvement for 'Coca-Cola Can' RecognitionHow to find time complexity of an algorithmHow to pair socks from a pile efficiently?What is the optimal algorithm for the game 2048?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








85















I'm curious if O(n log n) is the best a linked list can do.










share|improve this question



















  • 28





    Just so that you know, O(nlogn) is the bound for comparison based sorts. There are non-comparison based sorts than can give O(n) performance (e.g. counting sort), but they require additional constraints on the data.

    – MAK
    Oct 6 '09 at 15:50

















85















I'm curious if O(n log n) is the best a linked list can do.










share|improve this question



















  • 28





    Just so that you know, O(nlogn) is the bound for comparison based sorts. There are non-comparison based sorts than can give O(n) performance (e.g. counting sort), but they require additional constraints on the data.

    – MAK
    Oct 6 '09 at 15:50













85












85








85


53






I'm curious if O(n log n) is the best a linked list can do.










share|improve this question
















I'm curious if O(n log n) is the best a linked list can do.







algorithm sorting linked-list complexity-theory






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Jun 2 '13 at 0:50









Daniel Imms

35.3k7103142




35.3k7103142










asked Oct 6 '09 at 11:51









DirkDirk

3,130124468




3,130124468







  • 28





    Just so that you know, O(nlogn) is the bound for comparison based sorts. There are non-comparison based sorts than can give O(n) performance (e.g. counting sort), but they require additional constraints on the data.

    – MAK
    Oct 6 '09 at 15:50












  • 28





    Just so that you know, O(nlogn) is the bound for comparison based sorts. There are non-comparison based sorts than can give O(n) performance (e.g. counting sort), but they require additional constraints on the data.

    – MAK
    Oct 6 '09 at 15:50







28




28





Just so that you know, O(nlogn) is the bound for comparison based sorts. There are non-comparison based sorts than can give O(n) performance (e.g. counting sort), but they require additional constraints on the data.

– MAK
Oct 6 '09 at 15:50





Just so that you know, O(nlogn) is the bound for comparison based sorts. There are non-comparison based sorts than can give O(n) performance (e.g. counting sort), but they require additional constraints on the data.

– MAK
Oct 6 '09 at 15:50












12 Answers
12






active

oldest

votes


















87














It is reasonable to expect that you cannot do any better than O(N log N) in running time.



However, the interesting part is to investigate whether you can sort it in-place, stably, its worst-case behavior and so on.



Simon Tatham, of Putty fame, explains how to sort a linked list with merge sort. He concludes with the following comments:




Like any self-respecting sort algorithm, this has running time O(N log N). Because this is Mergesort, the worst-case running time is still O(N log N); there are no pathological cases.



Auxiliary storage requirement is small and constant (i.e. a few variables within the sorting routine). Thanks to the inherently different behaviour of linked lists from arrays, this Mergesort implementation avoids the O(N) auxiliary storage cost normally associated with the algorithm.




There is also an example implementation in C that work for both singly and doubly linked lists.



As @Jørgen Fogh mentions below, big-O notation may hide some constant factors that can cause one algorithm to perform better because of memory locality, because of a low number of items, etc.






share|improve this answer




















  • 2





    This is not for single linked list. His C code is using *prev and *next.

    – L.E.
    Apr 27 '13 at 5:35






  • 2





    @L.E. It's actually for both. If you see the signature for listsort, you'll see you can switch by using the parameter int is_double.

    – csl
    Oct 21 '13 at 14:07







  • 1





    @L.E.: here's a Python version of the listsort C code that supports only singly-linked lists

    – jfs
    Nov 2 '13 at 7:26











  • O(kn) is theoretically linear, and can be achieved with bucket sort. Assuming a reasonable k (number of bits /size of object you are sorting), it might be a bit faster

    – Adam
    Jul 14 '17 at 14:32


















67














Depending on a number of factors, it may actually be faster to copy the list to an array and then use a Quicksort.



The reason this might be faster is that an array has much better
cache performance than a linked list. If the nodes in the list are dispersed in memory, you
may be generating cache misses all over the place. Then again, if the array is large you will get cache misses anyway.



Mergesort parallelises better, so it may be a better choice if that is what you want. It is also much faster if you perform it directly on the linked list.



Since both algorithms run in O(n * log n), making an informed decision would involve profiling them both on the machine you would like to run them on.



--- EDIT



I decided to test my hypothesis and wrote a C-program which measured the time (using clock()) taken to sort a linked list of ints. I tried with a linked list where each node was allocated with malloc() and a linked list where the nodes were laid out linearly in an array, so the cache performance would be better. I compared these with the built-in qsort, which included copying everything from a fragmented list to an array and copying the result back again. Each algorithm was run on the same 10 data sets and the results were averaged.



These are the results:



N = 1000:




Fragmented list with merge sort: 0.000000 seconds



Array with qsort: 0.000000 seconds



Packed list with merge sort: 0.000000 seconds




N = 100000:




Fragmented list with merge sort: 0.039000 seconds



Array with qsort: 0.025000 seconds



Packed list with merge sort: 0.009000 seconds




N = 1000000:




Fragmented list with merge sort: 1.162000 seconds



Array with qsort: 0.420000 seconds



Packed list with merge sort: 0.112000 seconds




N = 100000000:




Fragmented list with merge sort: 364.797000 seconds



Array with qsort: 61.166000 seconds



Packed list with merge sort: 16.525000 seconds




Conclusion:



At least on my machine, copying into an array is well worth it to improve the cache performance, since you rarely have a completely packed linked list in real life. It should be noted that my machine has a 2.8GHz Phenom II, but only 0.6GHz RAM, so the cache is very important.






share|improve this answer




















  • 2





    Good comments, but you should consider the non-constant cost of copying the data from a list to an array (you'd have to traverse the list), as well as the worst case running time for quicksort.

    – csl
    Oct 6 '09 at 15:24






  • 1





    O(n * log n) is theoretically the same as O(n * log n + n), which would be including the cost of the copy. For any sufficiently large n, the cost of the copy really shouldn't matter; traversing a list once to the end should be n time.

    – Dean J
    Oct 6 '09 at 15:31






  • 1





    @DeanJ: Theoretically, yes, but remember that the original poster is putting forth the case where micro-optimizations matter. And in that case, the time spent turning a linked-list into an array has to be considered. The comments are insightful, but I'm not completely convinced it would provide performance gain in reality. It might work for a very small N, perhaps.

    – csl
    Oct 8 '09 at 7:37






  • 1





    @csl: Actually, I'd expect the benefits of locality to kick in for large N. Assuming that cache misses are the dominant performance effect, then the copy-qsort-copy approach results in about 2*N cache misses for the copying, plus the number of misses for the qsort, which will be a small fraction of Nlog(N) (since most accesses in qsort are to an element close to a recently-accessed element). The number of misses for the merge sort is a larger fraction of Nlog(N), since a higher proportion of comparisons cause a cache miss. So for large N, this term dominates and slows down mergesort.

    – Steve Jessop
    Nov 14 '09 at 15:57






  • 2





    @Steve: You are right that qsort is not a drop-in replacement, but my point is not really about qsort vs. mergesort. I just didn't feel like writing another version of the mergesort when qsort was readily available. The standard library is way more convenient than rolling your own.

    – Jørgen Fogh
    Nov 14 '09 at 21:40


















7














Comparison sorts (i.e. ones based on comparing elements) cannot possibly be faster than n log n. It doesn't matter what the underlying data structure is. See Wikipedia.



Other kinds of sort that take advantage of there being lots of identical elements in the list (such as the counting sort), or some expected distribution of elements in the list, are faster, though I can't think of any that work particularly well on a linked list.






share|improve this answer






























    5














    As stated many times, the lower bound on comparison based sorting for general data is going to be O(n log n). To briefly resummarize these arguments, there are n! different ways a list can be sorted. Any sort of comparison tree that has n! (which is in O(n^n)) possible final sorts is going to need at least log(n!) as its height: this gives you a O(log(n^n)) lower bound, which is O(n log n).



    So, for general data on a linked list, the best possible sort that will work on any data that can compare two objects is going to be O(n log n). However, if you have a more limited domain of things to work in, you can improve the time it takes (at least proportional to n). For instance, if you are working with integers no larger than some value, you could use Counting Sort or Radix Sort, as these use the specific objects you're sorting to reduce the complexity with proportion to n. Be careful, though, these add some other things to the complexity that you may not consider (for instance, Counting Sort and Radix sort both add in factors that are based on the size of the numbers you're sorting, O(n+k) where k is the size of largest number for Counting Sort, for instance).



    Also, if you happen to have objects that have a perfect hash (or at least a hash that maps all values differently), you could try using a counting or radix sort on their hash functions.






    share|improve this answer






























      5














      This is a nice little paper on this topic. His empirical conclusion is that Treesort is best, followed by Quicksort and Mergesort. Sediment sort, bubble sort, selection sort perform very badly.



      A COMPARATIVE STUDY OF LINKED LIST SORTING ALGORITHMS
      by Ching-Kuang Shene



      http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.9981






      share|improve this answer






























        3














        A Radix sort is particularly suited to a linked list, since it's easy to make a table of head pointers corresponding to each possible value of a digit.






        share|improve this answer


















        • 1





          Can you please explain more on this topic or give any resource link for radix sort in linked list.

          – LoveToCode
          Aug 19 '15 at 20:37


















        2














        Merge sort doesn't require O(1) access and is O ( n ln n ). No known algorithms for sorting general data are better than O ( n ln n ).



        The special data algorithms such as radix sort ( limits size of data ) or histogram sort ( counts discrete data ) could sort a linked list with a lower growth function, as long as you use a different structure with O(1) access as temporary storage.



        Another class of special data is a comparison sort of an almost sorted list with k elements out of order. This can be sorted in O ( kn ) operations.



        Copying the list to an array and back would be O(N), so any sorting algorithm can be used if space is not an issue.



        For example, given a linked list containing uint_8, this code will sort it in O(N) time using a histogram sort:



        #include <stdio.h>
        #include <stdint.h>
        #include <malloc.h>

        typedef struct _list list_t;
        struct _list
        uint8_t value;
        list_t *next;
        ;


        list_t* sort_list ( list_t* list )

        list_t* heads[257] = 0;
        list_t* tails[257] = 0;

        // O(N) loop
        for ( list_t* it = list; it != 0; it = it -> next )
        list_t* next = it -> next;

        if ( heads[ it -> value ] == 0 )
        heads[ it -> value ] = it;
        else
        tails[ it -> value ] -> next = it;


        tails[ it -> value ] = it;


        list_t* result = 0;

        // constant time loop
        for ( size_t i = 255; i-- > 0; )
        if ( tails[i] )
        tails[i] -> next = result;
        result = heads[i];



        return result;


        list_t* make_list ( char* string )

        list_t head;

        for ( list_t* it = &head; *string; it = it -> next, ++string )
        it -> next = malloc ( sizeof ( list_t ) );
        it -> next -> value = ( uint8_t ) * string;
        it -> next -> next = 0;


        return head.next;


        void free_list ( list_t* list )

        for ( list_t* it = list; it != 0; )
        list_t* next = it -> next;
        free ( it );
        it = next;



        void print_list ( list_t* list )

        printf ( "[ " );

        if ( list )
        printf ( "%c", list -> value );

        for ( list_t* it = list -> next; it != 0; it = it -> next )
        printf ( ", %c", it -> value );


        printf ( " ]n" );



        int main ( int nargs, char** args )

        list_t* list = make_list ( nargs > 1 ? args[1] : "wibble" );


        print_list ( list );

        list_t* sorted = sort_list ( list );


        print_list ( sorted );

        free_list ( list );






        share|improve this answer




















        • 5





          It's been proven that no comparison-based sort algorthms exist that are faster than n log n.

          – Artelius
          Oct 6 '09 at 11:58






        • 9





          No, it's been proven that no comparison-based sort algorithms on general data are faster than n log n

          – Pete Kirkham
          Oct 6 '09 at 11:59











        • No, any sort algorithm faster than O(n lg n) would not be comparison-based (eg, radix sort). By definition, comparison sort applies to any domain that has a total order (ie, can be compared).

          – bdonlan
          Oct 7 '09 at 2:48






        • 3





          @bdonlan the point of "general data" is that there are algorithms which are faster for constrained input, rather than random input. At the limiting case, you can write a trivial O(1) algorithm which sorts a list given the input data is constrained to be already sorted

          – Pete Kirkham
          Oct 7 '09 at 9:11











        • And that would not be a comparison-based sort. The modifier "on general data" is redundant, since comparison sorts already handle general data (and the big-O notation is for the number of comparisons made).

          – Steve Jessop
          Nov 14 '09 at 16:09


















        1














        Not a direct answer to your question, but if you use a Skip List, it is already sorted and has O(log N) search time.






        share|improve this answer


















        • 1





          expected O(lg N) search time - but not guaranteed, as skip lists rely on randomness. If you are receiving untrusted input, be sure the supplier of the input cannot predict your RNG, or they could send you data that triggers its worst case performance

          – bdonlan
          Oct 7 '09 at 2:47


















        1














        As I know, the best sorting algorithm is O(n*log n), whatever the container - it's been proved that sorting in the broad sense of the word (mergesort/quicksort etc style) can't go lower. Using a linked list will not give you a better run time.



        The only one algorithm which runs in O(n) is a "hack" algorithm which relies on counting values rather than actually sorting.






        share|improve this answer




















        • 2





          It's not a hack algorithm, and it doesn't run in O(n). It runs in O(cn), where c is the largest value you're sorting (well, really it's the difference between the highest and lowest values) and only works on integral values. There's a difference between O(n) and O(cn), as unless you can give a definitive upper bound for the values you're sorting (and thus bound it by a constant), you have two factors complicating the complexity.

          – DivineWolfwood
          Oct 6 '09 at 17:58











        • Strictly speaking, it runs in O(n lg c). If all of your elements are unique, then c >= n, and therefore it takes longer than O(n lg n).

          – bdonlan
          Oct 7 '09 at 2:50


















        1














        Here's an implementation that traverses the list just once, collecting runs, then schedules the merges in the same way that mergesort does.



        Complexity is O(n log m) where n is the number of items and m is the number of runs. Best case is O(n) (if the data is already sorted) and worst case is O(n log n) as expected.



        It requires O(log m) temporary memory; the sort is done in-place on the lists.



        (updated below. commenter one makes a good point that I should describe it here)



        The gist of the algorithm is:



         while list not empty
        accumulate a run from the start of the list
        merge the run with a stack of merges that simulate mergesort's recursion
        merge all remaining items on the stack


        Accumulating runs doesn't require much explanation, but it's good to take the opportunity to accumulate both ascending runs and descending runs (reversed). Here it prepends items smaller than the head of the run and appends items greater than or equal to the end of the run. (Note that prepending should use strict less-than to preserve sort stability.)



        It's easiest to just paste the merging code here:



         int i = 0;
        for ( ; i < stack.size(); ++i)
        if (!stack[i])
        break;
        run = merge(run, stack[i], comp);
        stack[i] = nullptr;

        if (i < stack.size())
        stack[i] = run;
        else
        stack.push_back(run);



        Consider sorting the list (d a g i b e c f j h) (ignoring runs). The stack states proceed as follows:



         [ ]
        [ (d) ]
        [ () (a d) ]
        [ (g), (a d) ]
        [ () () (a d g i) ]
        [ (b) () (a d g i) ]
        [ () (b e) (a d g i) ]
        [ (c) (b e) (a d g i ) ]
        [ () () () (a b c d e f g i) ]
        [ (j) () () (a b c d e f g i) ]
        [ () (h j) () (a b c d e f g i) ]


        Then, finally, merge all these lists.



        Note that the number of items (runs) at stack[i] is either zero or 2^i and the stack size is bounded by 1+log2(nruns). Each element is merged once per stack level, hence O(n log m) comparisons. There's a passing similarity to Timsort here, though Timsort maintains its stack using something like a Fibonacci sequence where this uses powers of two.



        Accumulating runs takes advantage of any already sorted data so that best case complexity is O(n) for an already sorted list (one run). Since we're accumulating both ascending and descending runs, runs will always be at least length 2. (This reduces the maximum stack depth by at least one, paying for the cost of finding the runs in the first place.) Worst case complexity is O(n log n), as expected, for data that is highly randomized.



        (Um... Second update.)



        Or just see wikipedia on bottom-up mergesort.






        share|improve this answer

























        • Having run creation perform well with "reversed input" is a nice touch. O(log m) additional memory should not be needed - just add runs to two list alternately until one is empty.

          – greybeard
          Dec 9 '15 at 3:46


















        1














        You can copy it into an array and then sort it.



        • Copying into array O(n),


        • sorting O(nlgn) (if you use a fast algorithm like merge sort ),


        • copying back to linked list O(n) if necessary,


        so it is gonna be O(nlgn).



        note that if you do not know the number of elements in the linked list you won't know the size of array. If you are coding in java you can use an Arraylist for example.






        share|improve this answer

























        • What does this add over Jørgen Fogh's answer?

          – greybeard
          Feb 14 at 23:00


















        0














        Mergesort is the best you can do here.






        share|improve this answer




















        • 9





          See Simon Tatham's chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html

          – Dominic Rodger
          Oct 6 '09 at 11:55






        • 11





          It would be a better answer if you would clarify why.

          – csl
          Oct 6 '09 at 12:26











        Your Answer






        StackExchange.ifUsing("editor", function ()
        StackExchange.using("externalEditor", function ()
        StackExchange.using("snippets", function ()
        StackExchange.snippets.init();
        );
        );
        , "code-snippets");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "1"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f1525117%2fwhats-the-fastest-algorithm-for-sorting-a-linked-list%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        12 Answers
        12






        active

        oldest

        votes








        12 Answers
        12






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        87














        It is reasonable to expect that you cannot do any better than O(N log N) in running time.



        However, the interesting part is to investigate whether you can sort it in-place, stably, its worst-case behavior and so on.



        Simon Tatham, of Putty fame, explains how to sort a linked list with merge sort. He concludes with the following comments:




        Like any self-respecting sort algorithm, this has running time O(N log N). Because this is Mergesort, the worst-case running time is still O(N log N); there are no pathological cases.



        Auxiliary storage requirement is small and constant (i.e. a few variables within the sorting routine). Thanks to the inherently different behaviour of linked lists from arrays, this Mergesort implementation avoids the O(N) auxiliary storage cost normally associated with the algorithm.




        There is also an example implementation in C that work for both singly and doubly linked lists.



        As @Jørgen Fogh mentions below, big-O notation may hide some constant factors that can cause one algorithm to perform better because of memory locality, because of a low number of items, etc.






        share|improve this answer




















        • 2





          This is not for single linked list. His C code is using *prev and *next.

          – L.E.
          Apr 27 '13 at 5:35






        • 2





          @L.E. It's actually for both. If you see the signature for listsort, you'll see you can switch by using the parameter int is_double.

          – csl
          Oct 21 '13 at 14:07







        • 1





          @L.E.: here's a Python version of the listsort C code that supports only singly-linked lists

          – jfs
          Nov 2 '13 at 7:26











        • O(kn) is theoretically linear, and can be achieved with bucket sort. Assuming a reasonable k (number of bits /size of object you are sorting), it might be a bit faster

          – Adam
          Jul 14 '17 at 14:32















        87














        It is reasonable to expect that you cannot do any better than O(N log N) in running time.



        However, the interesting part is to investigate whether you can sort it in-place, stably, its worst-case behavior and so on.



        Simon Tatham, of Putty fame, explains how to sort a linked list with merge sort. He concludes with the following comments:




        Like any self-respecting sort algorithm, this has running time O(N log N). Because this is Mergesort, the worst-case running time is still O(N log N); there are no pathological cases.



        Auxiliary storage requirement is small and constant (i.e. a few variables within the sorting routine). Thanks to the inherently different behaviour of linked lists from arrays, this Mergesort implementation avoids the O(N) auxiliary storage cost normally associated with the algorithm.




        There is also an example implementation in C that work for both singly and doubly linked lists.



        As @Jørgen Fogh mentions below, big-O notation may hide some constant factors that can cause one algorithm to perform better because of memory locality, because of a low number of items, etc.






        share|improve this answer




















        • 2





          This is not for single linked list. His C code is using *prev and *next.

          – L.E.
          Apr 27 '13 at 5:35






        • 2





          @L.E. It's actually for both. If you see the signature for listsort, you'll see you can switch by using the parameter int is_double.

          – csl
          Oct 21 '13 at 14:07







        • 1





          @L.E.: here's a Python version of the listsort C code that supports only singly-linked lists

          – jfs
          Nov 2 '13 at 7:26











        • O(kn) is theoretically linear, and can be achieved with bucket sort. Assuming a reasonable k (number of bits /size of object you are sorting), it might be a bit faster

          – Adam
          Jul 14 '17 at 14:32













        87












        87








        87







        It is reasonable to expect that you cannot do any better than O(N log N) in running time.



        However, the interesting part is to investigate whether you can sort it in-place, stably, its worst-case behavior and so on.



        Simon Tatham, of Putty fame, explains how to sort a linked list with merge sort. He concludes with the following comments:




        Like any self-respecting sort algorithm, this has running time O(N log N). Because this is Mergesort, the worst-case running time is still O(N log N); there are no pathological cases.



        Auxiliary storage requirement is small and constant (i.e. a few variables within the sorting routine). Thanks to the inherently different behaviour of linked lists from arrays, this Mergesort implementation avoids the O(N) auxiliary storage cost normally associated with the algorithm.




        There is also an example implementation in C that work for both singly and doubly linked lists.



        As @Jørgen Fogh mentions below, big-O notation may hide some constant factors that can cause one algorithm to perform better because of memory locality, because of a low number of items, etc.






        share|improve this answer















        It is reasonable to expect that you cannot do any better than O(N log N) in running time.



        However, the interesting part is to investigate whether you can sort it in-place, stably, its worst-case behavior and so on.



        Simon Tatham, of Putty fame, explains how to sort a linked list with merge sort. He concludes with the following comments:




        Like any self-respecting sort algorithm, this has running time O(N log N). Because this is Mergesort, the worst-case running time is still O(N log N); there are no pathological cases.



        Auxiliary storage requirement is small and constant (i.e. a few variables within the sorting routine). Thanks to the inherently different behaviour of linked lists from arrays, this Mergesort implementation avoids the O(N) auxiliary storage cost normally associated with the algorithm.




        There is also an example implementation in C that work for both singly and doubly linked lists.



        As @Jørgen Fogh mentions below, big-O notation may hide some constant factors that can cause one algorithm to perform better because of memory locality, because of a low number of items, etc.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Feb 3 '16 at 8:52

























        answered Oct 6 '09 at 12:05









        cslcsl

        8,84634482




        8,84634482







        • 2





          This is not for single linked list. His C code is using *prev and *next.

          – L.E.
          Apr 27 '13 at 5:35






        • 2





          @L.E. It's actually for both. If you see the signature for listsort, you'll see you can switch by using the parameter int is_double.

          – csl
          Oct 21 '13 at 14:07







        • 1





          @L.E.: here's a Python version of the listsort C code that supports only singly-linked lists

          – jfs
          Nov 2 '13 at 7:26











        • O(kn) is theoretically linear, and can be achieved with bucket sort. Assuming a reasonable k (number of bits /size of object you are sorting), it might be a bit faster

          – Adam
          Jul 14 '17 at 14:32












        • 2





          This is not for single linked list. His C code is using *prev and *next.

          – L.E.
          Apr 27 '13 at 5:35






        • 2





          @L.E. It's actually for both. If you see the signature for listsort, you'll see you can switch by using the parameter int is_double.

          – csl
          Oct 21 '13 at 14:07







        • 1





          @L.E.: here's a Python version of the listsort C code that supports only singly-linked lists

          – jfs
          Nov 2 '13 at 7:26











        • O(kn) is theoretically linear, and can be achieved with bucket sort. Assuming a reasonable k (number of bits /size of object you are sorting), it might be a bit faster

          – Adam
          Jul 14 '17 at 14:32







        2




        2





        This is not for single linked list. His C code is using *prev and *next.

        – L.E.
        Apr 27 '13 at 5:35





        This is not for single linked list. His C code is using *prev and *next.

        – L.E.
        Apr 27 '13 at 5:35




        2




        2





        @L.E. It's actually for both. If you see the signature for listsort, you'll see you can switch by using the parameter int is_double.

        – csl
        Oct 21 '13 at 14:07






        @L.E. It's actually for both. If you see the signature for listsort, you'll see you can switch by using the parameter int is_double.

        – csl
        Oct 21 '13 at 14:07





        1




        1





        @L.E.: here's a Python version of the listsort C code that supports only singly-linked lists

        – jfs
        Nov 2 '13 at 7:26





        @L.E.: here's a Python version of the listsort C code that supports only singly-linked lists

        – jfs
        Nov 2 '13 at 7:26













        O(kn) is theoretically linear, and can be achieved with bucket sort. Assuming a reasonable k (number of bits /size of object you are sorting), it might be a bit faster

        – Adam
        Jul 14 '17 at 14:32





        O(kn) is theoretically linear, and can be achieved with bucket sort. Assuming a reasonable k (number of bits /size of object you are sorting), it might be a bit faster

        – Adam
        Jul 14 '17 at 14:32













        67














        Depending on a number of factors, it may actually be faster to copy the list to an array and then use a Quicksort.



        The reason this might be faster is that an array has much better
        cache performance than a linked list. If the nodes in the list are dispersed in memory, you
        may be generating cache misses all over the place. Then again, if the array is large you will get cache misses anyway.



        Mergesort parallelises better, so it may be a better choice if that is what you want. It is also much faster if you perform it directly on the linked list.



        Since both algorithms run in O(n * log n), making an informed decision would involve profiling them both on the machine you would like to run them on.



        --- EDIT



        I decided to test my hypothesis and wrote a C-program which measured the time (using clock()) taken to sort a linked list of ints. I tried with a linked list where each node was allocated with malloc() and a linked list where the nodes were laid out linearly in an array, so the cache performance would be better. I compared these with the built-in qsort, which included copying everything from a fragmented list to an array and copying the result back again. Each algorithm was run on the same 10 data sets and the results were averaged.



        These are the results:



        N = 1000:




        Fragmented list with merge sort: 0.000000 seconds



        Array with qsort: 0.000000 seconds



        Packed list with merge sort: 0.000000 seconds




        N = 100000:




        Fragmented list with merge sort: 0.039000 seconds



        Array with qsort: 0.025000 seconds



        Packed list with merge sort: 0.009000 seconds




        N = 1000000:




        Fragmented list with merge sort: 1.162000 seconds



        Array with qsort: 0.420000 seconds



        Packed list with merge sort: 0.112000 seconds




        N = 100000000:




        Fragmented list with merge sort: 364.797000 seconds



        Array with qsort: 61.166000 seconds



        Packed list with merge sort: 16.525000 seconds




        Conclusion:



        At least on my machine, copying into an array is well worth it to improve the cache performance, since you rarely have a completely packed linked list in real life. It should be noted that my machine has a 2.8GHz Phenom II, but only 0.6GHz RAM, so the cache is very important.






        share|improve this answer




















        • 2





          Good comments, but you should consider the non-constant cost of copying the data from a list to an array (you'd have to traverse the list), as well as the worst case running time for quicksort.

          – csl
          Oct 6 '09 at 15:24






        • 1





          O(n * log n) is theoretically the same as O(n * log n + n), which would be including the cost of the copy. For any sufficiently large n, the cost of the copy really shouldn't matter; traversing a list once to the end should be n time.

          – Dean J
          Oct 6 '09 at 15:31






        • 1





          @DeanJ: Theoretically, yes, but remember that the original poster is putting forth the case where micro-optimizations matter. And in that case, the time spent turning a linked-list into an array has to be considered. The comments are insightful, but I'm not completely convinced it would provide performance gain in reality. It might work for a very small N, perhaps.

          – csl
          Oct 8 '09 at 7:37






        • 1





          @csl: Actually, I'd expect the benefits of locality to kick in for large N. Assuming that cache misses are the dominant performance effect, then the copy-qsort-copy approach results in about 2*N cache misses for the copying, plus the number of misses for the qsort, which will be a small fraction of Nlog(N) (since most accesses in qsort are to an element close to a recently-accessed element). The number of misses for the merge sort is a larger fraction of Nlog(N), since a higher proportion of comparisons cause a cache miss. So for large N, this term dominates and slows down mergesort.

          – Steve Jessop
          Nov 14 '09 at 15:57






        • 2





          @Steve: You are right that qsort is not a drop-in replacement, but my point is not really about qsort vs. mergesort. I just didn't feel like writing another version of the mergesort when qsort was readily available. The standard library is way more convenient than rolling your own.

          – Jørgen Fogh
          Nov 14 '09 at 21:40















        67














        Depending on a number of factors, it may actually be faster to copy the list to an array and then use a Quicksort.



        The reason this might be faster is that an array has much better
        cache performance than a linked list. If the nodes in the list are dispersed in memory, you
        may be generating cache misses all over the place. Then again, if the array is large you will get cache misses anyway.



        Mergesort parallelises better, so it may be a better choice if that is what you want. It is also much faster if you perform it directly on the linked list.



        Since both algorithms run in O(n * log n), making an informed decision would involve profiling them both on the machine you would like to run them on.



        --- EDIT



        I decided to test my hypothesis and wrote a C-program which measured the time (using clock()) taken to sort a linked list of ints. I tried with a linked list where each node was allocated with malloc() and a linked list where the nodes were laid out linearly in an array, so the cache performance would be better. I compared these with the built-in qsort, which included copying everything from a fragmented list to an array and copying the result back again. Each algorithm was run on the same 10 data sets and the results were averaged.



        These are the results:



        N = 1000:




        Fragmented list with merge sort: 0.000000 seconds



        Array with qsort: 0.000000 seconds



        Packed list with merge sort: 0.000000 seconds




        N = 100000:




        Fragmented list with merge sort: 0.039000 seconds



        Array with qsort: 0.025000 seconds



        Packed list with merge sort: 0.009000 seconds




        N = 1000000:




        Fragmented list with merge sort: 1.162000 seconds



        Array with qsort: 0.420000 seconds



        Packed list with merge sort: 0.112000 seconds




        N = 100000000:




        Fragmented list with merge sort: 364.797000 seconds



        Array with qsort: 61.166000 seconds



        Packed list with merge sort: 16.525000 seconds




        Conclusion:



        At least on my machine, copying into an array is well worth it to improve the cache performance, since you rarely have a completely packed linked list in real life. It should be noted that my machine has a 2.8GHz Phenom II, but only 0.6GHz RAM, so the cache is very important.






        share|improve this answer




















        • 2





          Good comments, but you should consider the non-constant cost of copying the data from a list to an array (you'd have to traverse the list), as well as the worst case running time for quicksort.

          – csl
          Oct 6 '09 at 15:24






        • 1





          O(n * log n) is theoretically the same as O(n * log n + n), which would be including the cost of the copy. For any sufficiently large n, the cost of the copy really shouldn't matter; traversing a list once to the end should be n time.

          – Dean J
          Oct 6 '09 at 15:31






        • 1





          @DeanJ: Theoretically, yes, but remember that the original poster is putting forth the case where micro-optimizations matter. And in that case, the time spent turning a linked-list into an array has to be considered. The comments are insightful, but I'm not completely convinced it would provide performance gain in reality. It might work for a very small N, perhaps.

          – csl
          Oct 8 '09 at 7:37






        • 1





          @csl: Actually, I'd expect the benefits of locality to kick in for large N. Assuming that cache misses are the dominant performance effect, then the copy-qsort-copy approach results in about 2*N cache misses for the copying, plus the number of misses for the qsort, which will be a small fraction of Nlog(N) (since most accesses in qsort are to an element close to a recently-accessed element). The number of misses for the merge sort is a larger fraction of Nlog(N), since a higher proportion of comparisons cause a cache miss. So for large N, this term dominates and slows down mergesort.

          – Steve Jessop
          Nov 14 '09 at 15:57






        • 2





          @Steve: You are right that qsort is not a drop-in replacement, but my point is not really about qsort vs. mergesort. I just didn't feel like writing another version of the mergesort when qsort was readily available. The standard library is way more convenient than rolling your own.

          – Jørgen Fogh
          Nov 14 '09 at 21:40













        67












        67








        67







        Depending on a number of factors, it may actually be faster to copy the list to an array and then use a Quicksort.



        The reason this might be faster is that an array has much better
        cache performance than a linked list. If the nodes in the list are dispersed in memory, you
        may be generating cache misses all over the place. Then again, if the array is large you will get cache misses anyway.



        Mergesort parallelises better, so it may be a better choice if that is what you want. It is also much faster if you perform it directly on the linked list.



        Since both algorithms run in O(n * log n), making an informed decision would involve profiling them both on the machine you would like to run them on.



        --- EDIT



        I decided to test my hypothesis and wrote a C-program which measured the time (using clock()) taken to sort a linked list of ints. I tried with a linked list where each node was allocated with malloc() and a linked list where the nodes were laid out linearly in an array, so the cache performance would be better. I compared these with the built-in qsort, which included copying everything from a fragmented list to an array and copying the result back again. Each algorithm was run on the same 10 data sets and the results were averaged.



        These are the results:



        N = 1000:




        Fragmented list with merge sort: 0.000000 seconds



        Array with qsort: 0.000000 seconds



        Packed list with merge sort: 0.000000 seconds




        N = 100000:




        Fragmented list with merge sort: 0.039000 seconds



        Array with qsort: 0.025000 seconds



        Packed list with merge sort: 0.009000 seconds




        N = 1000000:




        Fragmented list with merge sort: 1.162000 seconds



        Array with qsort: 0.420000 seconds



        Packed list with merge sort: 0.112000 seconds




        N = 100000000:




        Fragmented list with merge sort: 364.797000 seconds



        Array with qsort: 61.166000 seconds



        Packed list with merge sort: 16.525000 seconds




        Conclusion:



        At least on my machine, copying into an array is well worth it to improve the cache performance, since you rarely have a completely packed linked list in real life. It should be noted that my machine has a 2.8GHz Phenom II, but only 0.6GHz RAM, so the cache is very important.






        share|improve this answer















        Depending on a number of factors, it may actually be faster to copy the list to an array and then use a Quicksort.



        The reason this might be faster is that an array has much better
        cache performance than a linked list. If the nodes in the list are dispersed in memory, you
        may be generating cache misses all over the place. Then again, if the array is large you will get cache misses anyway.



        Mergesort parallelises better, so it may be a better choice if that is what you want. It is also much faster if you perform it directly on the linked list.



        Since both algorithms run in O(n * log n), making an informed decision would involve profiling them both on the machine you would like to run them on.



        --- EDIT



        I decided to test my hypothesis and wrote a C-program which measured the time (using clock()) taken to sort a linked list of ints. I tried with a linked list where each node was allocated with malloc() and a linked list where the nodes were laid out linearly in an array, so the cache performance would be better. I compared these with the built-in qsort, which included copying everything from a fragmented list to an array and copying the result back again. Each algorithm was run on the same 10 data sets and the results were averaged.



        These are the results:



        N = 1000:




        Fragmented list with merge sort: 0.000000 seconds



        Array with qsort: 0.000000 seconds



        Packed list with merge sort: 0.000000 seconds




        N = 100000:




        Fragmented list with merge sort: 0.039000 seconds



        Array with qsort: 0.025000 seconds



        Packed list with merge sort: 0.009000 seconds




        N = 1000000:




        Fragmented list with merge sort: 1.162000 seconds



        Array with qsort: 0.420000 seconds



        Packed list with merge sort: 0.112000 seconds




        N = 100000000:




        Fragmented list with merge sort: 364.797000 seconds



        Array with qsort: 61.166000 seconds



        Packed list with merge sort: 16.525000 seconds




        Conclusion:



        At least on my machine, copying into an array is well worth it to improve the cache performance, since you rarely have a completely packed linked list in real life. It should be noted that my machine has a 2.8GHz Phenom II, but only 0.6GHz RAM, so the cache is very important.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Oct 8 '09 at 13:57

























        answered Oct 6 '09 at 12:57









        Jørgen FoghJørgen Fogh

        6,20723144




        6,20723144







        • 2





          Good comments, but you should consider the non-constant cost of copying the data from a list to an array (you'd have to traverse the list), as well as the worst case running time for quicksort.

          – csl
          Oct 6 '09 at 15:24






        • 1





          O(n * log n) is theoretically the same as O(n * log n + n), which would be including the cost of the copy. For any sufficiently large n, the cost of the copy really shouldn't matter; traversing a list once to the end should be n time.

          – Dean J
          Oct 6 '09 at 15:31






        • 1





          @DeanJ: Theoretically, yes, but remember that the original poster is putting forth the case where micro-optimizations matter. And in that case, the time spent turning a linked-list into an array has to be considered. The comments are insightful, but I'm not completely convinced it would provide performance gain in reality. It might work for a very small N, perhaps.

          – csl
          Oct 8 '09 at 7:37






        • 1





          @csl: Actually, I'd expect the benefits of locality to kick in for large N. Assuming that cache misses are the dominant performance effect, then the copy-qsort-copy approach results in about 2*N cache misses for the copying, plus the number of misses for the qsort, which will be a small fraction of Nlog(N) (since most accesses in qsort are to an element close to a recently-accessed element). The number of misses for the merge sort is a larger fraction of Nlog(N), since a higher proportion of comparisons cause a cache miss. So for large N, this term dominates and slows down mergesort.

          – Steve Jessop
          Nov 14 '09 at 15:57






        • 2





          @Steve: You are right that qsort is not a drop-in replacement, but my point is not really about qsort vs. mergesort. I just didn't feel like writing another version of the mergesort when qsort was readily available. The standard library is way more convenient than rolling your own.

          – Jørgen Fogh
          Nov 14 '09 at 21:40












        • 2





          Good comments, but you should consider the non-constant cost of copying the data from a list to an array (you'd have to traverse the list), as well as the worst case running time for quicksort.

          – csl
          Oct 6 '09 at 15:24






        • 1





          O(n * log n) is theoretically the same as O(n * log n + n), which would be including the cost of the copy. For any sufficiently large n, the cost of the copy really shouldn't matter; traversing a list once to the end should be n time.

          – Dean J
          Oct 6 '09 at 15:31






        • 1





          @DeanJ: Theoretically, yes, but remember that the original poster is putting forth the case where micro-optimizations matter. And in that case, the time spent turning a linked-list into an array has to be considered. The comments are insightful, but I'm not completely convinced it would provide performance gain in reality. It might work for a very small N, perhaps.

          – csl
          Oct 8 '09 at 7:37






        • 1





          @csl: Actually, I'd expect the benefits of locality to kick in for large N. Assuming that cache misses are the dominant performance effect, then the copy-qsort-copy approach results in about 2*N cache misses for the copying, plus the number of misses for the qsort, which will be a small fraction of Nlog(N) (since most accesses in qsort are to an element close to a recently-accessed element). The number of misses for the merge sort is a larger fraction of Nlog(N), since a higher proportion of comparisons cause a cache miss. So for large N, this term dominates and slows down mergesort.

          – Steve Jessop
          Nov 14 '09 at 15:57






        • 2





          @Steve: You are right that qsort is not a drop-in replacement, but my point is not really about qsort vs. mergesort. I just didn't feel like writing another version of the mergesort when qsort was readily available. The standard library is way more convenient than rolling your own.

          – Jørgen Fogh
          Nov 14 '09 at 21:40







        2




        2





        Good comments, but you should consider the non-constant cost of copying the data from a list to an array (you'd have to traverse the list), as well as the worst case running time for quicksort.

        – csl
        Oct 6 '09 at 15:24





        Good comments, but you should consider the non-constant cost of copying the data from a list to an array (you'd have to traverse the list), as well as the worst case running time for quicksort.

        – csl
        Oct 6 '09 at 15:24




        1




        1





        O(n * log n) is theoretically the same as O(n * log n + n), which would be including the cost of the copy. For any sufficiently large n, the cost of the copy really shouldn't matter; traversing a list once to the end should be n time.

        – Dean J
        Oct 6 '09 at 15:31





        O(n * log n) is theoretically the same as O(n * log n + n), which would be including the cost of the copy. For any sufficiently large n, the cost of the copy really shouldn't matter; traversing a list once to the end should be n time.

        – Dean J
        Oct 6 '09 at 15:31




        1




        1





        @DeanJ: Theoretically, yes, but remember that the original poster is putting forth the case where micro-optimizations matter. And in that case, the time spent turning a linked-list into an array has to be considered. The comments are insightful, but I'm not completely convinced it would provide performance gain in reality. It might work for a very small N, perhaps.

        – csl
        Oct 8 '09 at 7:37





        @DeanJ: Theoretically, yes, but remember that the original poster is putting forth the case where micro-optimizations matter. And in that case, the time spent turning a linked-list into an array has to be considered. The comments are insightful, but I'm not completely convinced it would provide performance gain in reality. It might work for a very small N, perhaps.

        – csl
        Oct 8 '09 at 7:37




        1




        1





        @csl: Actually, I'd expect the benefits of locality to kick in for large N. Assuming that cache misses are the dominant performance effect, then the copy-qsort-copy approach results in about 2*N cache misses for the copying, plus the number of misses for the qsort, which will be a small fraction of Nlog(N) (since most accesses in qsort are to an element close to a recently-accessed element). The number of misses for the merge sort is a larger fraction of Nlog(N), since a higher proportion of comparisons cause a cache miss. So for large N, this term dominates and slows down mergesort.

        – Steve Jessop
        Nov 14 '09 at 15:57





        @csl: Actually, I'd expect the benefits of locality to kick in for large N. Assuming that cache misses are the dominant performance effect, then the copy-qsort-copy approach results in about 2*N cache misses for the copying, plus the number of misses for the qsort, which will be a small fraction of Nlog(N) (since most accesses in qsort are to an element close to a recently-accessed element). The number of misses for the merge sort is a larger fraction of Nlog(N), since a higher proportion of comparisons cause a cache miss. So for large N, this term dominates and slows down mergesort.

        – Steve Jessop
        Nov 14 '09 at 15:57




        2




        2





        @Steve: You are right that qsort is not a drop-in replacement, but my point is not really about qsort vs. mergesort. I just didn't feel like writing another version of the mergesort when qsort was readily available. The standard library is way more convenient than rolling your own.

        – Jørgen Fogh
        Nov 14 '09 at 21:40





        @Steve: You are right that qsort is not a drop-in replacement, but my point is not really about qsort vs. mergesort. I just didn't feel like writing another version of the mergesort when qsort was readily available. The standard library is way more convenient than rolling your own.

        – Jørgen Fogh
        Nov 14 '09 at 21:40











        7














        Comparison sorts (i.e. ones based on comparing elements) cannot possibly be faster than n log n. It doesn't matter what the underlying data structure is. See Wikipedia.



        Other kinds of sort that take advantage of there being lots of identical elements in the list (such as the counting sort), or some expected distribution of elements in the list, are faster, though I can't think of any that work particularly well on a linked list.






        share|improve this answer



























          7














          Comparison sorts (i.e. ones based on comparing elements) cannot possibly be faster than n log n. It doesn't matter what the underlying data structure is. See Wikipedia.



          Other kinds of sort that take advantage of there being lots of identical elements in the list (such as the counting sort), or some expected distribution of elements in the list, are faster, though I can't think of any that work particularly well on a linked list.






          share|improve this answer

























            7












            7








            7







            Comparison sorts (i.e. ones based on comparing elements) cannot possibly be faster than n log n. It doesn't matter what the underlying data structure is. See Wikipedia.



            Other kinds of sort that take advantage of there being lots of identical elements in the list (such as the counting sort), or some expected distribution of elements in the list, are faster, though I can't think of any that work particularly well on a linked list.






            share|improve this answer













            Comparison sorts (i.e. ones based on comparing elements) cannot possibly be faster than n log n. It doesn't matter what the underlying data structure is. See Wikipedia.



            Other kinds of sort that take advantage of there being lots of identical elements in the list (such as the counting sort), or some expected distribution of elements in the list, are faster, though I can't think of any that work particularly well on a linked list.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered Oct 6 '09 at 12:01









            ArteliusArtelius

            42k87896




            42k87896





















                5














                As stated many times, the lower bound on comparison based sorting for general data is going to be O(n log n). To briefly resummarize these arguments, there are n! different ways a list can be sorted. Any sort of comparison tree that has n! (which is in O(n^n)) possible final sorts is going to need at least log(n!) as its height: this gives you a O(log(n^n)) lower bound, which is O(n log n).



                So, for general data on a linked list, the best possible sort that will work on any data that can compare two objects is going to be O(n log n). However, if you have a more limited domain of things to work in, you can improve the time it takes (at least proportional to n). For instance, if you are working with integers no larger than some value, you could use Counting Sort or Radix Sort, as these use the specific objects you're sorting to reduce the complexity with proportion to n. Be careful, though, these add some other things to the complexity that you may not consider (for instance, Counting Sort and Radix sort both add in factors that are based on the size of the numbers you're sorting, O(n+k) where k is the size of largest number for Counting Sort, for instance).



                Also, if you happen to have objects that have a perfect hash (or at least a hash that maps all values differently), you could try using a counting or radix sort on their hash functions.






                share|improve this answer



























                  5














                  As stated many times, the lower bound on comparison based sorting for general data is going to be O(n log n). To briefly resummarize these arguments, there are n! different ways a list can be sorted. Any sort of comparison tree that has n! (which is in O(n^n)) possible final sorts is going to need at least log(n!) as its height: this gives you a O(log(n^n)) lower bound, which is O(n log n).



                  So, for general data on a linked list, the best possible sort that will work on any data that can compare two objects is going to be O(n log n). However, if you have a more limited domain of things to work in, you can improve the time it takes (at least proportional to n). For instance, if you are working with integers no larger than some value, you could use Counting Sort or Radix Sort, as these use the specific objects you're sorting to reduce the complexity with proportion to n. Be careful, though, these add some other things to the complexity that you may not consider (for instance, Counting Sort and Radix sort both add in factors that are based on the size of the numbers you're sorting, O(n+k) where k is the size of largest number for Counting Sort, for instance).



                  Also, if you happen to have objects that have a perfect hash (or at least a hash that maps all values differently), you could try using a counting or radix sort on their hash functions.






                  share|improve this answer

























                    5












                    5








                    5







                    As stated many times, the lower bound on comparison based sorting for general data is going to be O(n log n). To briefly resummarize these arguments, there are n! different ways a list can be sorted. Any sort of comparison tree that has n! (which is in O(n^n)) possible final sorts is going to need at least log(n!) as its height: this gives you a O(log(n^n)) lower bound, which is O(n log n).



                    So, for general data on a linked list, the best possible sort that will work on any data that can compare two objects is going to be O(n log n). However, if you have a more limited domain of things to work in, you can improve the time it takes (at least proportional to n). For instance, if you are working with integers no larger than some value, you could use Counting Sort or Radix Sort, as these use the specific objects you're sorting to reduce the complexity with proportion to n. Be careful, though, these add some other things to the complexity that you may not consider (for instance, Counting Sort and Radix sort both add in factors that are based on the size of the numbers you're sorting, O(n+k) where k is the size of largest number for Counting Sort, for instance).



                    Also, if you happen to have objects that have a perfect hash (or at least a hash that maps all values differently), you could try using a counting or radix sort on their hash functions.






                    share|improve this answer













                    As stated many times, the lower bound on comparison based sorting for general data is going to be O(n log n). To briefly resummarize these arguments, there are n! different ways a list can be sorted. Any sort of comparison tree that has n! (which is in O(n^n)) possible final sorts is going to need at least log(n!) as its height: this gives you a O(log(n^n)) lower bound, which is O(n log n).



                    So, for general data on a linked list, the best possible sort that will work on any data that can compare two objects is going to be O(n log n). However, if you have a more limited domain of things to work in, you can improve the time it takes (at least proportional to n). For instance, if you are working with integers no larger than some value, you could use Counting Sort or Radix Sort, as these use the specific objects you're sorting to reduce the complexity with proportion to n. Be careful, though, these add some other things to the complexity that you may not consider (for instance, Counting Sort and Radix sort both add in factors that are based on the size of the numbers you're sorting, O(n+k) where k is the size of largest number for Counting Sort, for instance).



                    Also, if you happen to have objects that have a perfect hash (or at least a hash that maps all values differently), you could try using a counting or radix sort on their hash functions.







                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered Oct 6 '09 at 18:12









                    DivineWolfwoodDivineWolfwood

                    1,5571019




                    1,5571019





















                        5














                        This is a nice little paper on this topic. His empirical conclusion is that Treesort is best, followed by Quicksort and Mergesort. Sediment sort, bubble sort, selection sort perform very badly.



                        A COMPARATIVE STUDY OF LINKED LIST SORTING ALGORITHMS
                        by Ching-Kuang Shene



                        http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.9981






                        share|improve this answer



























                          5














                          This is a nice little paper on this topic. His empirical conclusion is that Treesort is best, followed by Quicksort and Mergesort. Sediment sort, bubble sort, selection sort perform very badly.



                          A COMPARATIVE STUDY OF LINKED LIST SORTING ALGORITHMS
                          by Ching-Kuang Shene



                          http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.9981






                          share|improve this answer

























                            5












                            5








                            5







                            This is a nice little paper on this topic. His empirical conclusion is that Treesort is best, followed by Quicksort and Mergesort. Sediment sort, bubble sort, selection sort perform very badly.



                            A COMPARATIVE STUDY OF LINKED LIST SORTING ALGORITHMS
                            by Ching-Kuang Shene



                            http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.9981






                            share|improve this answer













                            This is a nice little paper on this topic. His empirical conclusion is that Treesort is best, followed by Quicksort and Mergesort. Sediment sort, bubble sort, selection sort perform very badly.



                            A COMPARATIVE STUDY OF LINKED LIST SORTING ALGORITHMS
                            by Ching-Kuang Shene



                            http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.9981







                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered Dec 29 '10 at 17:56









                            Neal RichterNeal Richter

                            5111




                            5111





















                                3














                                A Radix sort is particularly suited to a linked list, since it's easy to make a table of head pointers corresponding to each possible value of a digit.






                                share|improve this answer


















                                • 1





                                  Can you please explain more on this topic or give any resource link for radix sort in linked list.

                                  – LoveToCode
                                  Aug 19 '15 at 20:37















                                3














                                A Radix sort is particularly suited to a linked list, since it's easy to make a table of head pointers corresponding to each possible value of a digit.






                                share|improve this answer


















                                • 1





                                  Can you please explain more on this topic or give any resource link for radix sort in linked list.

                                  – LoveToCode
                                  Aug 19 '15 at 20:37













                                3












                                3








                                3







                                A Radix sort is particularly suited to a linked list, since it's easy to make a table of head pointers corresponding to each possible value of a digit.






                                share|improve this answer













                                A Radix sort is particularly suited to a linked list, since it's easy to make a table of head pointers corresponding to each possible value of a digit.







                                share|improve this answer












                                share|improve this answer



                                share|improve this answer










                                answered Oct 6 '09 at 18:25









                                Mark RansomMark Ransom

                                230k31292519




                                230k31292519







                                • 1





                                  Can you please explain more on this topic or give any resource link for radix sort in linked list.

                                  – LoveToCode
                                  Aug 19 '15 at 20:37












                                • 1





                                  Can you please explain more on this topic or give any resource link for radix sort in linked list.

                                  – LoveToCode
                                  Aug 19 '15 at 20:37







                                1




                                1





                                Can you please explain more on this topic or give any resource link for radix sort in linked list.

                                – LoveToCode
                                Aug 19 '15 at 20:37





                                Can you please explain more on this topic or give any resource link for radix sort in linked list.

                                – LoveToCode
                                Aug 19 '15 at 20:37











                                2














                                Merge sort doesn't require O(1) access and is O ( n ln n ). No known algorithms for sorting general data are better than O ( n ln n ).



                                The special data algorithms such as radix sort ( limits size of data ) or histogram sort ( counts discrete data ) could sort a linked list with a lower growth function, as long as you use a different structure with O(1) access as temporary storage.



                                Another class of special data is a comparison sort of an almost sorted list with k elements out of order. This can be sorted in O ( kn ) operations.



                                Copying the list to an array and back would be O(N), so any sorting algorithm can be used if space is not an issue.



                                For example, given a linked list containing uint_8, this code will sort it in O(N) time using a histogram sort:



                                #include <stdio.h>
                                #include <stdint.h>
                                #include <malloc.h>

                                typedef struct _list list_t;
                                struct _list
                                uint8_t value;
                                list_t *next;
                                ;


                                list_t* sort_list ( list_t* list )

                                list_t* heads[257] = 0;
                                list_t* tails[257] = 0;

                                // O(N) loop
                                for ( list_t* it = list; it != 0; it = it -> next )
                                list_t* next = it -> next;

                                if ( heads[ it -> value ] == 0 )
                                heads[ it -> value ] = it;
                                else
                                tails[ it -> value ] -> next = it;


                                tails[ it -> value ] = it;


                                list_t* result = 0;

                                // constant time loop
                                for ( size_t i = 255; i-- > 0; )
                                if ( tails[i] )
                                tails[i] -> next = result;
                                result = heads[i];



                                return result;


                                list_t* make_list ( char* string )

                                list_t head;

                                for ( list_t* it = &head; *string; it = it -> next, ++string )
                                it -> next = malloc ( sizeof ( list_t ) );
                                it -> next -> value = ( uint8_t ) * string;
                                it -> next -> next = 0;


                                return head.next;


                                void free_list ( list_t* list )

                                for ( list_t* it = list; it != 0; )
                                list_t* next = it -> next;
                                free ( it );
                                it = next;



                                void print_list ( list_t* list )

                                printf ( "[ " );

                                if ( list )
                                printf ( "%c", list -> value );

                                for ( list_t* it = list -> next; it != 0; it = it -> next )
                                printf ( ", %c", it -> value );


                                printf ( " ]n" );



                                int main ( int nargs, char** args )

                                list_t* list = make_list ( nargs > 1 ? args[1] : "wibble" );


                                print_list ( list );

                                list_t* sorted = sort_list ( list );


                                print_list ( sorted );

                                free_list ( list );






                                share|improve this answer




















                                • 5





                                  It's been proven that no comparison-based sort algorthms exist that are faster than n log n.

                                  – Artelius
                                  Oct 6 '09 at 11:58






                                • 9





                                  No, it's been proven that no comparison-based sort algorithms on general data are faster than n log n

                                  – Pete Kirkham
                                  Oct 6 '09 at 11:59











                                • No, any sort algorithm faster than O(n lg n) would not be comparison-based (eg, radix sort). By definition, comparison sort applies to any domain that has a total order (ie, can be compared).

                                  – bdonlan
                                  Oct 7 '09 at 2:48






                                • 3





                                  @bdonlan the point of "general data" is that there are algorithms which are faster for constrained input, rather than random input. At the limiting case, you can write a trivial O(1) algorithm which sorts a list given the input data is constrained to be already sorted

                                  – Pete Kirkham
                                  Oct 7 '09 at 9:11











                                • And that would not be a comparison-based sort. The modifier "on general data" is redundant, since comparison sorts already handle general data (and the big-O notation is for the number of comparisons made).

                                  – Steve Jessop
                                  Nov 14 '09 at 16:09















                                2














                                Merge sort doesn't require O(1) access and is O ( n ln n ). No known algorithms for sorting general data are better than O ( n ln n ).



                                The special data algorithms such as radix sort ( limits size of data ) or histogram sort ( counts discrete data ) could sort a linked list with a lower growth function, as long as you use a different structure with O(1) access as temporary storage.



                                Another class of special data is a comparison sort of an almost sorted list with k elements out of order. This can be sorted in O ( kn ) operations.



                                Copying the list to an array and back would be O(N), so any sorting algorithm can be used if space is not an issue.



                                For example, given a linked list containing uint_8, this code will sort it in O(N) time using a histogram sort:



                                #include <stdio.h>
                                #include <stdint.h>
                                #include <malloc.h>

                                typedef struct _list list_t;
                                struct _list
                                uint8_t value;
                                list_t *next;
                                ;


                                list_t* sort_list ( list_t* list )

                                list_t* heads[257] = 0;
                                list_t* tails[257] = 0;

                                // O(N) loop
                                for ( list_t* it = list; it != 0; it = it -> next )
                                list_t* next = it -> next;

                                if ( heads[ it -> value ] == 0 )
                                heads[ it -> value ] = it;
                                else
                                tails[ it -> value ] -> next = it;


                                tails[ it -> value ] = it;


                                list_t* result = 0;

                                // constant time loop
                                for ( size_t i = 255; i-- > 0; )
                                if ( tails[i] )
                                tails[i] -> next = result;
                                result = heads[i];



                                return result;


                                list_t* make_list ( char* string )

                                list_t head;

                                for ( list_t* it = &head; *string; it = it -> next, ++string )
                                it -> next = malloc ( sizeof ( list_t ) );
                                it -> next -> value = ( uint8_t ) * string;
                                it -> next -> next = 0;


                                return head.next;


                                void free_list ( list_t* list )

                                for ( list_t* it = list; it != 0; )
                                list_t* next = it -> next;
                                free ( it );
                                it = next;



                                void print_list ( list_t* list )

                                printf ( "[ " );

                                if ( list )
                                printf ( "%c", list -> value );

                                for ( list_t* it = list -> next; it != 0; it = it -> next )
                                printf ( ", %c", it -> value );


                                printf ( " ]n" );



                                int main ( int nargs, char** args )

                                list_t* list = make_list ( nargs > 1 ? args[1] : "wibble" );


                                print_list ( list );

                                list_t* sorted = sort_list ( list );


                                print_list ( sorted );

                                free_list ( list );






                                share|improve this answer




















                                • 5





                                  It's been proven that no comparison-based sort algorthms exist that are faster than n log n.

                                  – Artelius
                                  Oct 6 '09 at 11:58






                                • 9





                                  No, it's been proven that no comparison-based sort algorithms on general data are faster than n log n

                                  – Pete Kirkham
                                  Oct 6 '09 at 11:59











                                • No, any sort algorithm faster than O(n lg n) would not be comparison-based (eg, radix sort). By definition, comparison sort applies to any domain that has a total order (ie, can be compared).

                                  – bdonlan
                                  Oct 7 '09 at 2:48






                                • 3





                                  @bdonlan the point of "general data" is that there are algorithms which are faster for constrained input, rather than random input. At the limiting case, you can write a trivial O(1) algorithm which sorts a list given the input data is constrained to be already sorted

                                  – Pete Kirkham
                                  Oct 7 '09 at 9:11











                                • And that would not be a comparison-based sort. The modifier "on general data" is redundant, since comparison sorts already handle general data (and the big-O notation is for the number of comparisons made).

                                  – Steve Jessop
                                  Nov 14 '09 at 16:09













                                2












                                2








                                2







                                Merge sort doesn't require O(1) access and is O ( n ln n ). No known algorithms for sorting general data are better than O ( n ln n ).



                                The special data algorithms such as radix sort ( limits size of data ) or histogram sort ( counts discrete data ) could sort a linked list with a lower growth function, as long as you use a different structure with O(1) access as temporary storage.



                                Another class of special data is a comparison sort of an almost sorted list with k elements out of order. This can be sorted in O ( kn ) operations.



                                Copying the list to an array and back would be O(N), so any sorting algorithm can be used if space is not an issue.



                                For example, given a linked list containing uint_8, this code will sort it in O(N) time using a histogram sort:



                                #include <stdio.h>
                                #include <stdint.h>
                                #include <malloc.h>

                                typedef struct _list list_t;
                                struct _list
                                uint8_t value;
                                list_t *next;
                                ;


                                list_t* sort_list ( list_t* list )

                                list_t* heads[257] = 0;
                                list_t* tails[257] = 0;

                                // O(N) loop
                                for ( list_t* it = list; it != 0; it = it -> next )
                                list_t* next = it -> next;

                                if ( heads[ it -> value ] == 0 )
                                heads[ it -> value ] = it;
                                else
                                tails[ it -> value ] -> next = it;


                                tails[ it -> value ] = it;


                                list_t* result = 0;

                                // constant time loop
                                for ( size_t i = 255; i-- > 0; )
                                if ( tails[i] )
                                tails[i] -> next = result;
                                result = heads[i];



                                return result;


                                list_t* make_list ( char* string )

                                list_t head;

                                for ( list_t* it = &head; *string; it = it -> next, ++string )
                                it -> next = malloc ( sizeof ( list_t ) );
                                it -> next -> value = ( uint8_t ) * string;
                                it -> next -> next = 0;


                                return head.next;


                                void free_list ( list_t* list )

                                for ( list_t* it = list; it != 0; )
                                list_t* next = it -> next;
                                free ( it );
                                it = next;



                                void print_list ( list_t* list )

                                printf ( "[ " );

                                if ( list )
                                printf ( "%c", list -> value );

                                for ( list_t* it = list -> next; it != 0; it = it -> next )
                                printf ( ", %c", it -> value );


                                printf ( " ]n" );



                                int main ( int nargs, char** args )

                                list_t* list = make_list ( nargs > 1 ? args[1] : "wibble" );


                                print_list ( list );

                                list_t* sorted = sort_list ( list );


                                print_list ( sorted );

                                free_list ( list );






                                share|improve this answer















                                Merge sort doesn't require O(1) access and is O ( n ln n ). No known algorithms for sorting general data are better than O ( n ln n ).



                                The special data algorithms such as radix sort ( limits size of data ) or histogram sort ( counts discrete data ) could sort a linked list with a lower growth function, as long as you use a different structure with O(1) access as temporary storage.



                                Another class of special data is a comparison sort of an almost sorted list with k elements out of order. This can be sorted in O ( kn ) operations.



                                Copying the list to an array and back would be O(N), so any sorting algorithm can be used if space is not an issue.



                                For example, given a linked list containing uint_8, this code will sort it in O(N) time using a histogram sort:



                                #include <stdio.h>
                                #include <stdint.h>
                                #include <malloc.h>

                                typedef struct _list list_t;
                                struct _list
                                uint8_t value;
                                list_t *next;
                                ;


                                list_t* sort_list ( list_t* list )

                                list_t* heads[257] = 0;
                                list_t* tails[257] = 0;

                                // O(N) loop
                                for ( list_t* it = list; it != 0; it = it -> next )
                                list_t* next = it -> next;

                                if ( heads[ it -> value ] == 0 )
                                heads[ it -> value ] = it;
                                else
                                tails[ it -> value ] -> next = it;


                                tails[ it -> value ] = it;


                                list_t* result = 0;

                                // constant time loop
                                for ( size_t i = 255; i-- > 0; )
                                if ( tails[i] )
                                tails[i] -> next = result;
                                result = heads[i];



                                return result;


                                list_t* make_list ( char* string )

                                list_t head;

                                for ( list_t* it = &head; *string; it = it -> next, ++string )
                                it -> next = malloc ( sizeof ( list_t ) );
                                it -> next -> value = ( uint8_t ) * string;
                                it -> next -> next = 0;


                                return head.next;


                                void free_list ( list_t* list )

                                for ( list_t* it = list; it != 0; )
                                list_t* next = it -> next;
                                free ( it );
                                it = next;



                                void print_list ( list_t* list )

                                printf ( "[ " );

                                if ( list )
                                printf ( "%c", list -> value );

                                for ( list_t* it = list -> next; it != 0; it = it -> next )
                                printf ( ", %c", it -> value );


                                printf ( " ]n" );



                                int main ( int nargs, char** args )

                                list_t* list = make_list ( nargs > 1 ? args[1] : "wibble" );


                                print_list ( list );

                                list_t* sorted = sort_list ( list );


                                print_list ( sorted );

                                free_list ( list );







                                share|improve this answer














                                share|improve this answer



                                share|improve this answer








                                edited Oct 6 '09 at 13:49

























                                answered Oct 6 '09 at 11:56









                                Pete KirkhamPete Kirkham

                                43.6k480152




                                43.6k480152







                                • 5





                                  It's been proven that no comparison-based sort algorthms exist that are faster than n log n.

                                  – Artelius
                                  Oct 6 '09 at 11:58






                                • 9





                                  No, it's been proven that no comparison-based sort algorithms on general data are faster than n log n

                                  – Pete Kirkham
                                  Oct 6 '09 at 11:59











                                • No, any sort algorithm faster than O(n lg n) would not be comparison-based (eg, radix sort). By definition, comparison sort applies to any domain that has a total order (ie, can be compared).

                                  – bdonlan
                                  Oct 7 '09 at 2:48






                                • 3





                                  @bdonlan the point of "general data" is that there are algorithms which are faster for constrained input, rather than random input. At the limiting case, you can write a trivial O(1) algorithm which sorts a list given the input data is constrained to be already sorted

                                  – Pete Kirkham
                                  Oct 7 '09 at 9:11











                                • And that would not be a comparison-based sort. The modifier "on general data" is redundant, since comparison sorts already handle general data (and the big-O notation is for the number of comparisons made).

                                  – Steve Jessop
                                  Nov 14 '09 at 16:09












                                • 5





                                  It's been proven that no comparison-based sort algorthms exist that are faster than n log n.

                                  – Artelius
                                  Oct 6 '09 at 11:58






                                • 9





                                  No, it's been proven that no comparison-based sort algorithms on general data are faster than n log n

                                  – Pete Kirkham
                                  Oct 6 '09 at 11:59











                                • No, any sort algorithm faster than O(n lg n) would not be comparison-based (eg, radix sort). By definition, comparison sort applies to any domain that has a total order (ie, can be compared).

                                  – bdonlan
                                  Oct 7 '09 at 2:48






                                • 3





                                  @bdonlan the point of "general data" is that there are algorithms which are faster for constrained input, rather than random input. At the limiting case, you can write a trivial O(1) algorithm which sorts a list given the input data is constrained to be already sorted

                                  – Pete Kirkham
                                  Oct 7 '09 at 9:11











                                • And that would not be a comparison-based sort. The modifier "on general data" is redundant, since comparison sorts already handle general data (and the big-O notation is for the number of comparisons made).

                                  – Steve Jessop
                                  Nov 14 '09 at 16:09







                                5




                                5





                                It's been proven that no comparison-based sort algorthms exist that are faster than n log n.

                                – Artelius
                                Oct 6 '09 at 11:58





                                It's been proven that no comparison-based sort algorthms exist that are faster than n log n.

                                – Artelius
                                Oct 6 '09 at 11:58




                                9




                                9





                                No, it's been proven that no comparison-based sort algorithms on general data are faster than n log n

                                – Pete Kirkham
                                Oct 6 '09 at 11:59





                                No, it's been proven that no comparison-based sort algorithms on general data are faster than n log n

                                – Pete Kirkham
                                Oct 6 '09 at 11:59













                                No, any sort algorithm faster than O(n lg n) would not be comparison-based (eg, radix sort). By definition, comparison sort applies to any domain that has a total order (ie, can be compared).

                                – bdonlan
                                Oct 7 '09 at 2:48





                                No, any sort algorithm faster than O(n lg n) would not be comparison-based (eg, radix sort). By definition, comparison sort applies to any domain that has a total order (ie, can be compared).

                                – bdonlan
                                Oct 7 '09 at 2:48




                                3




                                3





                                @bdonlan the point of "general data" is that there are algorithms which are faster for constrained input, rather than random input. At the limiting case, you can write a trivial O(1) algorithm which sorts a list given the input data is constrained to be already sorted

                                – Pete Kirkham
                                Oct 7 '09 at 9:11





                                @bdonlan the point of "general data" is that there are algorithms which are faster for constrained input, rather than random input. At the limiting case, you can write a trivial O(1) algorithm which sorts a list given the input data is constrained to be already sorted

                                – Pete Kirkham
                                Oct 7 '09 at 9:11













                                And that would not be a comparison-based sort. The modifier "on general data" is redundant, since comparison sorts already handle general data (and the big-O notation is for the number of comparisons made).

                                – Steve Jessop
                                Nov 14 '09 at 16:09





                                And that would not be a comparison-based sort. The modifier "on general data" is redundant, since comparison sorts already handle general data (and the big-O notation is for the number of comparisons made).

                                – Steve Jessop
                                Nov 14 '09 at 16:09











                                1














                                Not a direct answer to your question, but if you use a Skip List, it is already sorted and has O(log N) search time.






                                share|improve this answer


















                                • 1





                                  expected O(lg N) search time - but not guaranteed, as skip lists rely on randomness. If you are receiving untrusted input, be sure the supplier of the input cannot predict your RNG, or they could send you data that triggers its worst case performance

                                  – bdonlan
                                  Oct 7 '09 at 2:47















                                1














                                Not a direct answer to your question, but if you use a Skip List, it is already sorted and has O(log N) search time.






                                share|improve this answer


















                                • 1





                                  expected O(lg N) search time - but not guaranteed, as skip lists rely on randomness. If you are receiving untrusted input, be sure the supplier of the input cannot predict your RNG, or they could send you data that triggers its worst case performance

                                  – bdonlan
                                  Oct 7 '09 at 2:47













                                1












                                1








                                1







                                Not a direct answer to your question, but if you use a Skip List, it is already sorted and has O(log N) search time.






                                share|improve this answer













                                Not a direct answer to your question, but if you use a Skip List, it is already sorted and has O(log N) search time.







                                share|improve this answer












                                share|improve this answer



                                share|improve this answer










                                answered Oct 6 '09 at 11:53









                                Mitch WheatMitch Wheat

                                260k36409503




                                260k36409503







                                • 1





                                  expected O(lg N) search time - but not guaranteed, as skip lists rely on randomness. If you are receiving untrusted input, be sure the supplier of the input cannot predict your RNG, or they could send you data that triggers its worst case performance

                                  – bdonlan
                                  Oct 7 '09 at 2:47












                                • 1





                                  expected O(lg N) search time - but not guaranteed, as skip lists rely on randomness. If you are receiving untrusted input, be sure the supplier of the input cannot predict your RNG, or they could send you data that triggers its worst case performance

                                  – bdonlan
                                  Oct 7 '09 at 2:47







                                1




                                1





                                expected O(lg N) search time - but not guaranteed, as skip lists rely on randomness. If you are receiving untrusted input, be sure the supplier of the input cannot predict your RNG, or they could send you data that triggers its worst case performance

                                – bdonlan
                                Oct 7 '09 at 2:47





                                expected O(lg N) search time - but not guaranteed, as skip lists rely on randomness. If you are receiving untrusted input, be sure the supplier of the input cannot predict your RNG, or they could send you data that triggers its worst case performance

                                – bdonlan
                                Oct 7 '09 at 2:47











                                1














                                As I know, the best sorting algorithm is O(n*log n), whatever the container - it's been proved that sorting in the broad sense of the word (mergesort/quicksort etc style) can't go lower. Using a linked list will not give you a better run time.



                                The only one algorithm which runs in O(n) is a "hack" algorithm which relies on counting values rather than actually sorting.






                                share|improve this answer




















                                • 2





                                  It's not a hack algorithm, and it doesn't run in O(n). It runs in O(cn), where c is the largest value you're sorting (well, really it's the difference between the highest and lowest values) and only works on integral values. There's a difference between O(n) and O(cn), as unless you can give a definitive upper bound for the values you're sorting (and thus bound it by a constant), you have two factors complicating the complexity.

                                  – DivineWolfwood
                                  Oct 6 '09 at 17:58











                                • Strictly speaking, it runs in O(n lg c). If all of your elements are unique, then c >= n, and therefore it takes longer than O(n lg n).

                                  – bdonlan
                                  Oct 7 '09 at 2:50















                                1














                                As I know, the best sorting algorithm is O(n*log n), whatever the container - it's been proved that sorting in the broad sense of the word (mergesort/quicksort etc style) can't go lower. Using a linked list will not give you a better run time.



                                The only one algorithm which runs in O(n) is a "hack" algorithm which relies on counting values rather than actually sorting.






                                share|improve this answer




















                                • 2





                                  It's not a hack algorithm, and it doesn't run in O(n). It runs in O(cn), where c is the largest value you're sorting (well, really it's the difference between the highest and lowest values) and only works on integral values. There's a difference between O(n) and O(cn), as unless you can give a definitive upper bound for the values you're sorting (and thus bound it by a constant), you have two factors complicating the complexity.

                                  – DivineWolfwood
                                  Oct 6 '09 at 17:58











                                • Strictly speaking, it runs in O(n lg c). If all of your elements are unique, then c >= n, and therefore it takes longer than O(n lg n).

                                  – bdonlan
                                  Oct 7 '09 at 2:50













                                1












                                1








                                1







                                As I know, the best sorting algorithm is O(n*log n), whatever the container - it's been proved that sorting in the broad sense of the word (mergesort/quicksort etc style) can't go lower. Using a linked list will not give you a better run time.



                                The only one algorithm which runs in O(n) is a "hack" algorithm which relies on counting values rather than actually sorting.






                                share|improve this answer















                                As I know, the best sorting algorithm is O(n*log n), whatever the container - it's been proved that sorting in the broad sense of the word (mergesort/quicksort etc style) can't go lower. Using a linked list will not give you a better run time.



                                The only one algorithm which runs in O(n) is a "hack" algorithm which relies on counting values rather than actually sorting.







                                share|improve this answer














                                share|improve this answer



                                share|improve this answer








                                edited Oct 6 '09 at 12:00

























                                answered Oct 6 '09 at 11:54









                                lauralaura

                                6,26343041




                                6,26343041







                                • 2





                                  It's not a hack algorithm, and it doesn't run in O(n). It runs in O(cn), where c is the largest value you're sorting (well, really it's the difference between the highest and lowest values) and only works on integral values. There's a difference between O(n) and O(cn), as unless you can give a definitive upper bound for the values you're sorting (and thus bound it by a constant), you have two factors complicating the complexity.

                                  – DivineWolfwood
                                  Oct 6 '09 at 17:58











                                • Strictly speaking, it runs in O(n lg c). If all of your elements are unique, then c >= n, and therefore it takes longer than O(n lg n).

                                  – bdonlan
                                  Oct 7 '09 at 2:50












                                • 2





                                  It's not a hack algorithm, and it doesn't run in O(n). It runs in O(cn), where c is the largest value you're sorting (well, really it's the difference between the highest and lowest values) and only works on integral values. There's a difference between O(n) and O(cn), as unless you can give a definitive upper bound for the values you're sorting (and thus bound it by a constant), you have two factors complicating the complexity.

                                  – DivineWolfwood
                                  Oct 6 '09 at 17:58











                                • Strictly speaking, it runs in O(n lg c). If all of your elements are unique, then c >= n, and therefore it takes longer than O(n lg n).

                                  – bdonlan
                                  Oct 7 '09 at 2:50







                                2




                                2





                                It's not a hack algorithm, and it doesn't run in O(n). It runs in O(cn), where c is the largest value you're sorting (well, really it's the difference between the highest and lowest values) and only works on integral values. There's a difference between O(n) and O(cn), as unless you can give a definitive upper bound for the values you're sorting (and thus bound it by a constant), you have two factors complicating the complexity.

                                – DivineWolfwood
                                Oct 6 '09 at 17:58





                                It's not a hack algorithm, and it doesn't run in O(n). It runs in O(cn), where c is the largest value you're sorting (well, really it's the difference between the highest and lowest values) and only works on integral values. There's a difference between O(n) and O(cn), as unless you can give a definitive upper bound for the values you're sorting (and thus bound it by a constant), you have two factors complicating the complexity.

                                – DivineWolfwood
                                Oct 6 '09 at 17:58













                                Strictly speaking, it runs in O(n lg c). If all of your elements are unique, then c >= n, and therefore it takes longer than O(n lg n).

                                – bdonlan
                                Oct 7 '09 at 2:50





                                Strictly speaking, it runs in O(n lg c). If all of your elements are unique, then c >= n, and therefore it takes longer than O(n lg n).

                                – bdonlan
                                Oct 7 '09 at 2:50











                                1














                                Here's an implementation that traverses the list just once, collecting runs, then schedules the merges in the same way that mergesort does.



                                Complexity is O(n log m) where n is the number of items and m is the number of runs. Best case is O(n) (if the data is already sorted) and worst case is O(n log n) as expected.



                                It requires O(log m) temporary memory; the sort is done in-place on the lists.



                                (updated below. commenter one makes a good point that I should describe it here)



                                The gist of the algorithm is:



                                 while list not empty
                                accumulate a run from the start of the list
                                merge the run with a stack of merges that simulate mergesort's recursion
                                merge all remaining items on the stack


                                Accumulating runs doesn't require much explanation, but it's good to take the opportunity to accumulate both ascending runs and descending runs (reversed). Here it prepends items smaller than the head of the run and appends items greater than or equal to the end of the run. (Note that prepending should use strict less-than to preserve sort stability.)



                                It's easiest to just paste the merging code here:



                                 int i = 0;
                                for ( ; i < stack.size(); ++i)
                                if (!stack[i])
                                break;
                                run = merge(run, stack[i], comp);
                                stack[i] = nullptr;

                                if (i < stack.size())
                                stack[i] = run;
                                else
                                stack.push_back(run);



                                Consider sorting the list (d a g i b e c f j h) (ignoring runs). The stack states proceed as follows:



                                 [ ]
                                [ (d) ]
                                [ () (a d) ]
                                [ (g), (a d) ]
                                [ () () (a d g i) ]
                                [ (b) () (a d g i) ]
                                [ () (b e) (a d g i) ]
                                [ (c) (b e) (a d g i ) ]
                                [ () () () (a b c d e f g i) ]
                                [ (j) () () (a b c d e f g i) ]
                                [ () (h j) () (a b c d e f g i) ]


                                Then, finally, merge all these lists.



                                Note that the number of items (runs) at stack[i] is either zero or 2^i and the stack size is bounded by 1+log2(nruns). Each element is merged once per stack level, hence O(n log m) comparisons. There's a passing similarity to Timsort here, though Timsort maintains its stack using something like a Fibonacci sequence where this uses powers of two.



                                Accumulating runs takes advantage of any already sorted data so that best case complexity is O(n) for an already sorted list (one run). Since we're accumulating both ascending and descending runs, runs will always be at least length 2. (This reduces the maximum stack depth by at least one, paying for the cost of finding the runs in the first place.) Worst case complexity is O(n log n), as expected, for data that is highly randomized.



                                (Um... Second update.)



                                Or just see wikipedia on bottom-up mergesort.






                                share|improve this answer

























                                • Having run creation perform well with "reversed input" is a nice touch. O(log m) additional memory should not be needed - just add runs to two list alternately until one is empty.

                                  – greybeard
                                  Dec 9 '15 at 3:46















                                1














                                Here's an implementation that traverses the list just once, collecting runs, then schedules the merges in the same way that mergesort does.



                                Complexity is O(n log m) where n is the number of items and m is the number of runs. Best case is O(n) (if the data is already sorted) and worst case is O(n log n) as expected.



                                It requires O(log m) temporary memory; the sort is done in-place on the lists.



                                (updated below. commenter one makes a good point that I should describe it here)



                                The gist of the algorithm is:



                                 while list not empty
                                accumulate a run from the start of the list
                                merge the run with a stack of merges that simulate mergesort's recursion
                                merge all remaining items on the stack


                                Accumulating runs doesn't require much explanation, but it's good to take the opportunity to accumulate both ascending runs and descending runs (reversed). Here it prepends items smaller than the head of the run and appends items greater than or equal to the end of the run. (Note that prepending should use strict less-than to preserve sort stability.)



                                It's easiest to just paste the merging code here:



                                 int i = 0;
                                for ( ; i < stack.size(); ++i)
                                if (!stack[i])
                                break;
                                run = merge(run, stack[i], comp);
                                stack[i] = nullptr;

                                if (i < stack.size())
                                stack[i] = run;
                                else
                                stack.push_back(run);



                                Consider sorting the list (d a g i b e c f j h) (ignoring runs). The stack states proceed as follows:



                                 [ ]
                                [ (d) ]
                                [ () (a d) ]
                                [ (g), (a d) ]
                                [ () () (a d g i) ]
                                [ (b) () (a d g i) ]
                                [ () (b e) (a d g i) ]
                                [ (c) (b e) (a d g i ) ]
                                [ () () () (a b c d e f g i) ]
                                [ (j) () () (a b c d e f g i) ]
                                [ () (h j) () (a b c d e f g i) ]


                                Then, finally, merge all these lists.



                                Note that the number of items (runs) at stack[i] is either zero or 2^i and the stack size is bounded by 1+log2(nruns). Each element is merged once per stack level, hence O(n log m) comparisons. There's a passing similarity to Timsort here, though Timsort maintains its stack using something like a Fibonacci sequence where this uses powers of two.



                                Accumulating runs takes advantage of any already sorted data so that best case complexity is O(n) for an already sorted list (one run). Since we're accumulating both ascending and descending runs, runs will always be at least length 2. (This reduces the maximum stack depth by at least one, paying for the cost of finding the runs in the first place.) Worst case complexity is O(n log n), as expected, for data that is highly randomized.



                                (Um... Second update.)



                                Or just see wikipedia on bottom-up mergesort.






                                share|improve this answer

























                                • Having run creation perform well with "reversed input" is a nice touch. O(log m) additional memory should not be needed - just add runs to two list alternately until one is empty.

                                  – greybeard
                                  Dec 9 '15 at 3:46













                                1












                                1








                                1







                                Here's an implementation that traverses the list just once, collecting runs, then schedules the merges in the same way that mergesort does.



                                Complexity is O(n log m) where n is the number of items and m is the number of runs. Best case is O(n) (if the data is already sorted) and worst case is O(n log n) as expected.



                                It requires O(log m) temporary memory; the sort is done in-place on the lists.



                                (updated below. commenter one makes a good point that I should describe it here)



                                The gist of the algorithm is:



                                 while list not empty
                                accumulate a run from the start of the list
                                merge the run with a stack of merges that simulate mergesort's recursion
                                merge all remaining items on the stack


                                Accumulating runs doesn't require much explanation, but it's good to take the opportunity to accumulate both ascending runs and descending runs (reversed). Here it prepends items smaller than the head of the run and appends items greater than or equal to the end of the run. (Note that prepending should use strict less-than to preserve sort stability.)



                                It's easiest to just paste the merging code here:



                                 int i = 0;
                                for ( ; i < stack.size(); ++i)
                                if (!stack[i])
                                break;
                                run = merge(run, stack[i], comp);
                                stack[i] = nullptr;

                                if (i < stack.size())
                                stack[i] = run;
                                else
                                stack.push_back(run);



                                Consider sorting the list (d a g i b e c f j h) (ignoring runs). The stack states proceed as follows:



                                 [ ]
                                [ (d) ]
                                [ () (a d) ]
                                [ (g), (a d) ]
                                [ () () (a d g i) ]
                                [ (b) () (a d g i) ]
                                [ () (b e) (a d g i) ]
                                [ (c) (b e) (a d g i ) ]
                                [ () () () (a b c d e f g i) ]
                                [ (j) () () (a b c d e f g i) ]
                                [ () (h j) () (a b c d e f g i) ]


                                Then, finally, merge all these lists.



                                Note that the number of items (runs) at stack[i] is either zero or 2^i and the stack size is bounded by 1+log2(nruns). Each element is merged once per stack level, hence O(n log m) comparisons. There's a passing similarity to Timsort here, though Timsort maintains its stack using something like a Fibonacci sequence where this uses powers of two.



                                Accumulating runs takes advantage of any already sorted data so that best case complexity is O(n) for an already sorted list (one run). Since we're accumulating both ascending and descending runs, runs will always be at least length 2. (This reduces the maximum stack depth by at least one, paying for the cost of finding the runs in the first place.) Worst case complexity is O(n log n), as expected, for data that is highly randomized.



                                (Um... Second update.)



                                Or just see wikipedia on bottom-up mergesort.






                                share|improve this answer















                                Here's an implementation that traverses the list just once, collecting runs, then schedules the merges in the same way that mergesort does.



                                Complexity is O(n log m) where n is the number of items and m is the number of runs. Best case is O(n) (if the data is already sorted) and worst case is O(n log n) as expected.



                                It requires O(log m) temporary memory; the sort is done in-place on the lists.



                                (updated below. commenter one makes a good point that I should describe it here)



                                The gist of the algorithm is:



                                 while list not empty
                                accumulate a run from the start of the list
                                merge the run with a stack of merges that simulate mergesort's recursion
                                merge all remaining items on the stack


                                Accumulating runs doesn't require much explanation, but it's good to take the opportunity to accumulate both ascending runs and descending runs (reversed). Here it prepends items smaller than the head of the run and appends items greater than or equal to the end of the run. (Note that prepending should use strict less-than to preserve sort stability.)



                                It's easiest to just paste the merging code here:



                                 int i = 0;
                                for ( ; i < stack.size(); ++i)
                                if (!stack[i])
                                break;
                                run = merge(run, stack[i], comp);
                                stack[i] = nullptr;

                                if (i < stack.size())
                                stack[i] = run;
                                else
                                stack.push_back(run);



                                Consider sorting the list (d a g i b e c f j h) (ignoring runs). The stack states proceed as follows:



                                 [ ]
                                [ (d) ]
                                [ () (a d) ]
                                [ (g), (a d) ]
                                [ () () (a d g i) ]
                                [ (b) () (a d g i) ]
                                [ () (b e) (a d g i) ]
                                [ (c) (b e) (a d g i ) ]
                                [ () () () (a b c d e f g i) ]
                                [ (j) () () (a b c d e f g i) ]
                                [ () (h j) () (a b c d e f g i) ]


                                Then, finally, merge all these lists.



                                Note that the number of items (runs) at stack[i] is either zero or 2^i and the stack size is bounded by 1+log2(nruns). Each element is merged once per stack level, hence O(n log m) comparisons. There's a passing similarity to Timsort here, though Timsort maintains its stack using something like a Fibonacci sequence where this uses powers of two.



                                Accumulating runs takes advantage of any already sorted data so that best case complexity is O(n) for an already sorted list (one run). Since we're accumulating both ascending and descending runs, runs will always be at least length 2. (This reduces the maximum stack depth by at least one, paying for the cost of finding the runs in the first place.) Worst case complexity is O(n log n), as expected, for data that is highly randomized.



                                (Um... Second update.)



                                Or just see wikipedia on bottom-up mergesort.







                                share|improve this answer














                                share|improve this answer



                                share|improve this answer








                                edited Dec 10 '15 at 3:02

























                                answered Dec 8 '15 at 19:02









                                Stan SwitzerStan Switzer

                                112




                                112












                                • Having run creation perform well with "reversed input" is a nice touch. O(log m) additional memory should not be needed - just add runs to two list alternately until one is empty.

                                  – greybeard
                                  Dec 9 '15 at 3:46

















                                • Having run creation perform well with "reversed input" is a nice touch. O(log m) additional memory should not be needed - just add runs to two list alternately until one is empty.

                                  – greybeard
                                  Dec 9 '15 at 3:46
















                                Having run creation perform well with "reversed input" is a nice touch. O(log m) additional memory should not be needed - just add runs to two list alternately until one is empty.

                                – greybeard
                                Dec 9 '15 at 3:46





                                Having run creation perform well with "reversed input" is a nice touch. O(log m) additional memory should not be needed - just add runs to two list alternately until one is empty.

                                – greybeard
                                Dec 9 '15 at 3:46











                                1














                                You can copy it into an array and then sort it.



                                • Copying into array O(n),


                                • sorting O(nlgn) (if you use a fast algorithm like merge sort ),


                                • copying back to linked list O(n) if necessary,


                                so it is gonna be O(nlgn).



                                note that if you do not know the number of elements in the linked list you won't know the size of array. If you are coding in java you can use an Arraylist for example.






                                share|improve this answer

























                                • What does this add over Jørgen Fogh's answer?

                                  – greybeard
                                  Feb 14 at 23:00















                                1














                                You can copy it into an array and then sort it.



                                • Copying into array O(n),


                                • sorting O(nlgn) (if you use a fast algorithm like merge sort ),


                                • copying back to linked list O(n) if necessary,


                                so it is gonna be O(nlgn).



                                note that if you do not know the number of elements in the linked list you won't know the size of array. If you are coding in java you can use an Arraylist for example.






                                share|improve this answer

























                                • What does this add over Jørgen Fogh's answer?

                                  – greybeard
                                  Feb 14 at 23:00













                                1












                                1








                                1







                                You can copy it into an array and then sort it.



                                • Copying into array O(n),


                                • sorting O(nlgn) (if you use a fast algorithm like merge sort ),


                                • copying back to linked list O(n) if necessary,


                                so it is gonna be O(nlgn).



                                note that if you do not know the number of elements in the linked list you won't know the size of array. If you are coding in java you can use an Arraylist for example.






                                share|improve this answer















                                You can copy it into an array and then sort it.



                                • Copying into array O(n),


                                • sorting O(nlgn) (if you use a fast algorithm like merge sort ),


                                • copying back to linked list O(n) if necessary,


                                so it is gonna be O(nlgn).



                                note that if you do not know the number of elements in the linked list you won't know the size of array. If you are coding in java you can use an Arraylist for example.







                                share|improve this answer














                                share|improve this answer



                                share|improve this answer








                                edited Feb 14 at 22:49









                                hce

                                639317




                                639317










                                answered Feb 14 at 21:38









                                Shirin Shirin

                                111




                                111












                                • What does this add over Jørgen Fogh's answer?

                                  – greybeard
                                  Feb 14 at 23:00

















                                • What does this add over Jørgen Fogh's answer?

                                  – greybeard
                                  Feb 14 at 23:00
















                                What does this add over Jørgen Fogh's answer?

                                – greybeard
                                Feb 14 at 23:00





                                What does this add over Jørgen Fogh's answer?

                                – greybeard
                                Feb 14 at 23:00











                                0














                                Mergesort is the best you can do here.






                                share|improve this answer




















                                • 9





                                  See Simon Tatham's chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html

                                  – Dominic Rodger
                                  Oct 6 '09 at 11:55






                                • 11





                                  It would be a better answer if you would clarify why.

                                  – csl
                                  Oct 6 '09 at 12:26















                                0














                                Mergesort is the best you can do here.






                                share|improve this answer




















                                • 9





                                  See Simon Tatham's chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html

                                  – Dominic Rodger
                                  Oct 6 '09 at 11:55






                                • 11





                                  It would be a better answer if you would clarify why.

                                  – csl
                                  Oct 6 '09 at 12:26













                                0












                                0








                                0







                                Mergesort is the best you can do here.






                                share|improve this answer















                                Mergesort is the best you can do here.







                                share|improve this answer














                                share|improve this answer



                                share|improve this answer








                                edited Oct 7 '09 at 2:34

























                                answered Oct 6 '09 at 11:53









                                ypnosypnos

                                37.7k1378114




                                37.7k1378114







                                • 9





                                  See Simon Tatham's chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html

                                  – Dominic Rodger
                                  Oct 6 '09 at 11:55






                                • 11





                                  It would be a better answer if you would clarify why.

                                  – csl
                                  Oct 6 '09 at 12:26












                                • 9





                                  See Simon Tatham's chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html

                                  – Dominic Rodger
                                  Oct 6 '09 at 11:55






                                • 11





                                  It would be a better answer if you would clarify why.

                                  – csl
                                  Oct 6 '09 at 12:26







                                9




                                9





                                See Simon Tatham's chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html

                                – Dominic Rodger
                                Oct 6 '09 at 11:55





                                See Simon Tatham's chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html

                                – Dominic Rodger
                                Oct 6 '09 at 11:55




                                11




                                11





                                It would be a better answer if you would clarify why.

                                – csl
                                Oct 6 '09 at 12:26





                                It would be a better answer if you would clarify why.

                                – csl
                                Oct 6 '09 at 12:26

















                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Stack Overflow!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f1525117%2fwhats-the-fastest-algorithm-for-sorting-a-linked-list%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

                                SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

                                은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현