raise ValueError(“GraphDef cannot be larger than 2GB.”)Pelican 3.3 pelican-quickstart error “ValueError: unknown locale: UTF-8”Why is tuple larger than a list in python?Raise ValueError for multiple if-elseParsing Python JSON request raises ValueErrormin function raising ValueError exceptionValueError: I/O operation on closed file raised on capturing raw_inputPandas concatenating dataframes raises ValueErrorTensorflow + Keras + Convolution2d: ValueError: Filter must not be larger than the input: Filter: (5, 5) Input: (3, 350)Triple Integration: ValueError: negative number cannot be raised to a fractional powerTensorflow tf.train.shuffle_batch() Cannot create a tensor proto whose content is larger than 2GB
King or Queen-Which piece is which?
S&P 500 Index Value
Summing cube roots in fractions
A conjecture concerning symmetric convex sets
Large-n limit of the distribution of the normalized sum of Cauchy random variables
I found a password with hashcat but it doesn't work
Mapping with iterating uint as identifier - multiple transactions in the same block
Implementation of the Jacobi Symbol in C
Name for a function whose effect is canceled by another function?
Setting up the trap
How Hebrew Vowels Work
What preparations would Hubble have needed to return in a Shuttle?
How to best clean this sealed rotary encoder / volume knob?
Explain why a line can never intersect a plane in exactly two points.
Why do you need to heat the pan before heating the olive oil?
Am I legally required to provide a (GPL licensed) source code even after a project is abandoned?
Would a 7805 5 V regulator drain a 9 V battery?
Predict the product from the reaction
Leaving job close to major deadlines
What does this Swiss black on yellow rectangular traffic sign with a symbol looking like a dart mean?
Why are there no file insertion syscalls
How can I ping multiple IP addresses at the same time?
No shading in ContourPlot3D
Counterfeit checks were created for my account. How does this type of fraud work?
raise ValueError(“GraphDef cannot be larger than 2GB.”)
Pelican 3.3 pelican-quickstart error “ValueError: unknown locale: UTF-8”Why is tuple larger than a list in python?Raise ValueError for multiple if-elseParsing Python JSON request raises ValueErrormin function raising ValueError exceptionValueError: I/O operation on closed file raised on capturing raw_inputPandas concatenating dataframes raises ValueErrorTensorflow + Keras + Convolution2d: ValueError: Filter must not be larger than the input: Filter: (5, 5) Input: (3, 350)Triple Integration: ValueError: negative number cannot be raised to a fractional powerTensorflow tf.train.shuffle_batch() Cannot create a tensor proto whose content is larger than 2GB
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;
I am adding rgb and its corresponding depth image in a code and save the result as numpy array a 6 channel images. i run the code it is woprking till 193 images but after that it stopped with the error GraphDef cannot be larger than 2GB. i searched and found some solution but i am unable to change my code.
filename='image_2'
filename1='depth'
filename2='train'
if _platform == "linux" or _platform == "linux2": # linux
data_path = '/home/lps/squeezeDet/data/KITTI/training/'+filename+'/'
data_path1 = '/home/lps/squeezeDet/data/KITTI/training/'+filename1+'/'
data_path2 = '/home/lps/squeezeDet/data/KITTI/training/'+filename2+'/'
elif _platform == "darwin": # MAC OS X
data_path = '/Users/CCLee/image_data/dicom_so/'
# out_path = '/Users/CCLee/tmp/dicom_so/out/'
elif _platform == "win32": # Windows
data_path = 'D:/work_data/dicom_so/'
# out_path = 'D:/work_data/dicom_so/out/'
inpath = pathlib.Path(data_path)
inpath1 = pathlib.Path(data_path1)
outpath = pathlib.Path(data_path2)
if not outpath.exists():
outpath.mkdir()
print('no output path, create '.format(filename2))
dicom_lst = sorted(inpath.glob('*.png'))
dicom_lst1 = sorted(inpath1.glob('*.png'))
dicom_list = dicom_lst#[3:4]
num_files = len(dicom_list)
i=0
for fname1, fname in zip(dicom_list,dicom_lst1) :
filename1=fname.name.rsplit('.', 2)[0]
ftitle = fname1.name.rsplit('.', 2)[0]
# ftitle = ftitle[-5:]
print('process /, depth image:, original image: '.format(i+1, num_files, fname.name,fname1.name))
i=+1
image = mpimg.imread(str(fname1))
image1 = mpimg.imread(str(fname))
x = tf.Variable(image, name='x')
y = tf.Variable(image1, name='y')
model = tf.global_variables_initializer()
with tf.Session() as session:
z = tf.concat([x,y],2)
#x= tf.concat([tf.expand_dims(t, 2) for t in x,y],2)
session.run(model)
result = session.run(z)
out_name = outpath.joinpath(ftitle+'.npy')
np.save(str(out_name), result)
python-2.7
add a comment |
I am adding rgb and its corresponding depth image in a code and save the result as numpy array a 6 channel images. i run the code it is woprking till 193 images but after that it stopped with the error GraphDef cannot be larger than 2GB. i searched and found some solution but i am unable to change my code.
filename='image_2'
filename1='depth'
filename2='train'
if _platform == "linux" or _platform == "linux2": # linux
data_path = '/home/lps/squeezeDet/data/KITTI/training/'+filename+'/'
data_path1 = '/home/lps/squeezeDet/data/KITTI/training/'+filename1+'/'
data_path2 = '/home/lps/squeezeDet/data/KITTI/training/'+filename2+'/'
elif _platform == "darwin": # MAC OS X
data_path = '/Users/CCLee/image_data/dicom_so/'
# out_path = '/Users/CCLee/tmp/dicom_so/out/'
elif _platform == "win32": # Windows
data_path = 'D:/work_data/dicom_so/'
# out_path = 'D:/work_data/dicom_so/out/'
inpath = pathlib.Path(data_path)
inpath1 = pathlib.Path(data_path1)
outpath = pathlib.Path(data_path2)
if not outpath.exists():
outpath.mkdir()
print('no output path, create '.format(filename2))
dicom_lst = sorted(inpath.glob('*.png'))
dicom_lst1 = sorted(inpath1.glob('*.png'))
dicom_list = dicom_lst#[3:4]
num_files = len(dicom_list)
i=0
for fname1, fname in zip(dicom_list,dicom_lst1) :
filename1=fname.name.rsplit('.', 2)[0]
ftitle = fname1.name.rsplit('.', 2)[0]
# ftitle = ftitle[-5:]
print('process /, depth image:, original image: '.format(i+1, num_files, fname.name,fname1.name))
i=+1
image = mpimg.imread(str(fname1))
image1 = mpimg.imread(str(fname))
x = tf.Variable(image, name='x')
y = tf.Variable(image1, name='y')
model = tf.global_variables_initializer()
with tf.Session() as session:
z = tf.concat([x,y],2)
#x= tf.concat([tf.expand_dims(t, 2) for t in x,y],2)
session.run(model)
result = session.run(z)
out_name = outpath.joinpath(ftitle+'.npy')
np.save(str(out_name), result)
python-2.7
add a comment |
I am adding rgb and its corresponding depth image in a code and save the result as numpy array a 6 channel images. i run the code it is woprking till 193 images but after that it stopped with the error GraphDef cannot be larger than 2GB. i searched and found some solution but i am unable to change my code.
filename='image_2'
filename1='depth'
filename2='train'
if _platform == "linux" or _platform == "linux2": # linux
data_path = '/home/lps/squeezeDet/data/KITTI/training/'+filename+'/'
data_path1 = '/home/lps/squeezeDet/data/KITTI/training/'+filename1+'/'
data_path2 = '/home/lps/squeezeDet/data/KITTI/training/'+filename2+'/'
elif _platform == "darwin": # MAC OS X
data_path = '/Users/CCLee/image_data/dicom_so/'
# out_path = '/Users/CCLee/tmp/dicom_so/out/'
elif _platform == "win32": # Windows
data_path = 'D:/work_data/dicom_so/'
# out_path = 'D:/work_data/dicom_so/out/'
inpath = pathlib.Path(data_path)
inpath1 = pathlib.Path(data_path1)
outpath = pathlib.Path(data_path2)
if not outpath.exists():
outpath.mkdir()
print('no output path, create '.format(filename2))
dicom_lst = sorted(inpath.glob('*.png'))
dicom_lst1 = sorted(inpath1.glob('*.png'))
dicom_list = dicom_lst#[3:4]
num_files = len(dicom_list)
i=0
for fname1, fname in zip(dicom_list,dicom_lst1) :
filename1=fname.name.rsplit('.', 2)[0]
ftitle = fname1.name.rsplit('.', 2)[0]
# ftitle = ftitle[-5:]
print('process /, depth image:, original image: '.format(i+1, num_files, fname.name,fname1.name))
i=+1
image = mpimg.imread(str(fname1))
image1 = mpimg.imread(str(fname))
x = tf.Variable(image, name='x')
y = tf.Variable(image1, name='y')
model = tf.global_variables_initializer()
with tf.Session() as session:
z = tf.concat([x,y],2)
#x= tf.concat([tf.expand_dims(t, 2) for t in x,y],2)
session.run(model)
result = session.run(z)
out_name = outpath.joinpath(ftitle+'.npy')
np.save(str(out_name), result)
python-2.7
I am adding rgb and its corresponding depth image in a code and save the result as numpy array a 6 channel images. i run the code it is woprking till 193 images but after that it stopped with the error GraphDef cannot be larger than 2GB. i searched and found some solution but i am unable to change my code.
filename='image_2'
filename1='depth'
filename2='train'
if _platform == "linux" or _platform == "linux2": # linux
data_path = '/home/lps/squeezeDet/data/KITTI/training/'+filename+'/'
data_path1 = '/home/lps/squeezeDet/data/KITTI/training/'+filename1+'/'
data_path2 = '/home/lps/squeezeDet/data/KITTI/training/'+filename2+'/'
elif _platform == "darwin": # MAC OS X
data_path = '/Users/CCLee/image_data/dicom_so/'
# out_path = '/Users/CCLee/tmp/dicom_so/out/'
elif _platform == "win32": # Windows
data_path = 'D:/work_data/dicom_so/'
# out_path = 'D:/work_data/dicom_so/out/'
inpath = pathlib.Path(data_path)
inpath1 = pathlib.Path(data_path1)
outpath = pathlib.Path(data_path2)
if not outpath.exists():
outpath.mkdir()
print('no output path, create '.format(filename2))
dicom_lst = sorted(inpath.glob('*.png'))
dicom_lst1 = sorted(inpath1.glob('*.png'))
dicom_list = dicom_lst#[3:4]
num_files = len(dicom_list)
i=0
for fname1, fname in zip(dicom_list,dicom_lst1) :
filename1=fname.name.rsplit('.', 2)[0]
ftitle = fname1.name.rsplit('.', 2)[0]
# ftitle = ftitle[-5:]
print('process /, depth image:, original image: '.format(i+1, num_files, fname.name,fname1.name))
i=+1
image = mpimg.imread(str(fname1))
image1 = mpimg.imread(str(fname))
x = tf.Variable(image, name='x')
y = tf.Variable(image1, name='y')
model = tf.global_variables_initializer()
with tf.Session() as session:
z = tf.concat([x,y],2)
#x= tf.concat([tf.expand_dims(t, 2) for t in x,y],2)
session.run(model)
result = session.run(z)
out_name = outpath.joinpath(ftitle+'.npy')
np.save(str(out_name), result)
python-2.7
python-2.7
asked Mar 25 at 6:06
Mazhar Ul HaqMazhar Ul Haq
12
12
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55332058%2fraise-valueerrorgraphdef-cannot-be-larger-than-2gb%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55332058%2fraise-valueerrorgraphdef-cannot-be-larger-than-2gb%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown