Is there a possibility to convert complex json to pandas dataframe?What is the difference between json.load() and json.loads() functionsHow do I format a Microsoft JSON date?Can comments be used in JSON?How can I pretty-print JSON in a shell script?What is the correct JSON content type?Why does Google prepend while(1); to their JSON responses?Convert JS object to JSON stringParse JSON in JavaScript?How do I POST JSON data with Curl from a terminal/commandline to Test Spring REST?How to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandas

Should I have shared a document with a former employee?

Why would word of Princess Leia's capture generate sympathy for the Rebellion in the Senate?

Do higher dimensions have axes?

What's a German word for »Sandbagger«?

Is it possible to target 2 allies with the Warding Bond spell using the Sorcerer's Twinned Spell metamagic option?

Which modern firearm should a time traveler bring to be easily reproducible for a historic civilization?

Linux ext4 restore file and directory access rights after bad backup/restore

What makes MOVEQ quicker than a normal MOVE in 68000 assembly?

PLINQ code analysis in terms of efficiency of cryptographic hashes generation

Extract the attribute names from a large number of Shapefiles

Why are there few or no black super GMs?

A spacecraft is travelling at X units per hour. But relative to what exactly? Does it depend on orbit? How?

Locked-up DOS computer beeped on keypress. What mechanism caused that?

Applying for jobs with an obvious scar

I want light controlled by one switch, not two

Is encryption still applied if you ignore the SSL certificate warning for self-signed certs?

Suggestions for how to track down the source of this force:source:push error?

Why is this guy handcuffed censored?

Masyu-making game

What would be the safest way to drop thousands of small, hard objects from a typical, high wing, GA airplane?

What is this green alien supposed to be on the American covers of the "Hitchhiker's Guide to the Galaxy"?

How do you send money when you're not sure it's not a scam?

Why does a tetrahedral molecule like methane have a dipole moment of zero?

Function over a list that depends on the index



Is there a possibility to convert complex json to pandas dataframe?


What is the difference between json.load() and json.loads() functionsHow do I format a Microsoft JSON date?Can comments be used in JSON?How can I pretty-print JSON in a shell script?What is the correct JSON content type?Why does Google prepend while(1); to their JSON responses?Convert JS object to JSON stringParse JSON in JavaScript?How do I POST JSON data with Curl from a terminal/commandline to Test Spring REST?How to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandas






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








0















I know there are quite similar questions so far, but I just don't get a right idea sorry.



I would like to convert a complex json to a clean pandas dataframe.



My Code so far:



with open('JSON_Input.json', 'r') as json_file:
json_data = json.load(json_file)
json_data = json.loads(json_data)



This creates the following complex, nested json object:



json_data 

'time': 0,
'day1': ['time': 0,
'coordinates': ['x': 1202.5, 'y': 486, 'time': 3276,
'x': 1162.5, 'y': 484, 'time': 3331,
'x': 742.5, 'y': 492.5, 'time': 3487,
'x': 673.5, 'y': 501.5, 'time': 3514,
'x': 636, 'y': 508.5, 'time': 3539],
'path': 'path1',
'time': 3558,
'coordinates': ['x': 1237, 'y': 173, 'time': 5437,
'x': 1240, 'y': 182, 'time': 5601,
'x': 1260, 'y': 161, 'time': 7289,
'x': 1263, 'y': 165, 'time': 7465,
'x': 1482, 'y': 114.5, 'time': 8072,
'x': 1482, 'y': 114, 'time': 8197,
'x': 1482, 'y': 126.5, 'time': 9539],
'path': 'path2',
'time': 23620,
'coordinates': ['x': 227.5, 'y': 420, 'time': 25228,
'x': 235, 'y': 418, 'time': 25426],
'path': 'path3',
'time': 35891,
'coordinates': ['x': 681.5, 'y': 431, 'time': 36648,
'x': 704.5, 'y': 427.5, 'time': 36661,
'x': 874.5, 'y': 420.5, 'time': 36714,
'x': 909.5, 'y': 422, 'time': 36734]],
'day2': 'path': 'path4',
'time': 36743,
'coordinates': ['x': 600, 'y': 622.5, 'time': 37390,
'x': 603, 'y': 594.5, 'time': 37448,
'x': 605, 'y': 541.5, 'time': 37478,
'x': 608.5, 'y': 481.5, 'time': 37495,
'x': 620, 'y': 369, 'time': 37530,
'x': 624.5, 'y': 329, 'time': 37547,
'x': 636, 'y': 366, 'time': 38043]


Now how can get a clean dataframe out of this json file?










share|improve this question
























  • show the desired dataframe output please

    – aws_apprentice
    Mar 26 at 11:32











  • That's the next problem. I was just given this json file and was told to analyze it and to make a dataframe that can be shown in Excel for example. Neither me nor my collegue knows the expected dataframe output =/

    – Larsus123
    Mar 26 at 11:42











  • that makes it kind of hard to help. so you can either provide context for exactly what it is you have to analyze or you go back to your boss and ask for more information

    – aws_apprentice
    Mar 26 at 11:44











  • Yes I will do that. Thanks for your time. When I have more information, I will write again.

    – Larsus123
    Mar 26 at 11:45











  • @Larsus123 any purticular reason why you are doing json_data = json.load(json_file) & json_data = json.loads(json_data)

    – penta
    Mar 26 at 12:10

















0















I know there are quite similar questions so far, but I just don't get a right idea sorry.



I would like to convert a complex json to a clean pandas dataframe.



My Code so far:



with open('JSON_Input.json', 'r') as json_file:
json_data = json.load(json_file)
json_data = json.loads(json_data)



This creates the following complex, nested json object:



json_data 

'time': 0,
'day1': ['time': 0,
'coordinates': ['x': 1202.5, 'y': 486, 'time': 3276,
'x': 1162.5, 'y': 484, 'time': 3331,
'x': 742.5, 'y': 492.5, 'time': 3487,
'x': 673.5, 'y': 501.5, 'time': 3514,
'x': 636, 'y': 508.5, 'time': 3539],
'path': 'path1',
'time': 3558,
'coordinates': ['x': 1237, 'y': 173, 'time': 5437,
'x': 1240, 'y': 182, 'time': 5601,
'x': 1260, 'y': 161, 'time': 7289,
'x': 1263, 'y': 165, 'time': 7465,
'x': 1482, 'y': 114.5, 'time': 8072,
'x': 1482, 'y': 114, 'time': 8197,
'x': 1482, 'y': 126.5, 'time': 9539],
'path': 'path2',
'time': 23620,
'coordinates': ['x': 227.5, 'y': 420, 'time': 25228,
'x': 235, 'y': 418, 'time': 25426],
'path': 'path3',
'time': 35891,
'coordinates': ['x': 681.5, 'y': 431, 'time': 36648,
'x': 704.5, 'y': 427.5, 'time': 36661,
'x': 874.5, 'y': 420.5, 'time': 36714,
'x': 909.5, 'y': 422, 'time': 36734]],
'day2': 'path': 'path4',
'time': 36743,
'coordinates': ['x': 600, 'y': 622.5, 'time': 37390,
'x': 603, 'y': 594.5, 'time': 37448,
'x': 605, 'y': 541.5, 'time': 37478,
'x': 608.5, 'y': 481.5, 'time': 37495,
'x': 620, 'y': 369, 'time': 37530,
'x': 624.5, 'y': 329, 'time': 37547,
'x': 636, 'y': 366, 'time': 38043]


Now how can get a clean dataframe out of this json file?










share|improve this question
























  • show the desired dataframe output please

    – aws_apprentice
    Mar 26 at 11:32











  • That's the next problem. I was just given this json file and was told to analyze it and to make a dataframe that can be shown in Excel for example. Neither me nor my collegue knows the expected dataframe output =/

    – Larsus123
    Mar 26 at 11:42











  • that makes it kind of hard to help. so you can either provide context for exactly what it is you have to analyze or you go back to your boss and ask for more information

    – aws_apprentice
    Mar 26 at 11:44











  • Yes I will do that. Thanks for your time. When I have more information, I will write again.

    – Larsus123
    Mar 26 at 11:45











  • @Larsus123 any purticular reason why you are doing json_data = json.load(json_file) & json_data = json.loads(json_data)

    – penta
    Mar 26 at 12:10













0












0








0


1






I know there are quite similar questions so far, but I just don't get a right idea sorry.



I would like to convert a complex json to a clean pandas dataframe.



My Code so far:



with open('JSON_Input.json', 'r') as json_file:
json_data = json.load(json_file)
json_data = json.loads(json_data)



This creates the following complex, nested json object:



json_data 

'time': 0,
'day1': ['time': 0,
'coordinates': ['x': 1202.5, 'y': 486, 'time': 3276,
'x': 1162.5, 'y': 484, 'time': 3331,
'x': 742.5, 'y': 492.5, 'time': 3487,
'x': 673.5, 'y': 501.5, 'time': 3514,
'x': 636, 'y': 508.5, 'time': 3539],
'path': 'path1',
'time': 3558,
'coordinates': ['x': 1237, 'y': 173, 'time': 5437,
'x': 1240, 'y': 182, 'time': 5601,
'x': 1260, 'y': 161, 'time': 7289,
'x': 1263, 'y': 165, 'time': 7465,
'x': 1482, 'y': 114.5, 'time': 8072,
'x': 1482, 'y': 114, 'time': 8197,
'x': 1482, 'y': 126.5, 'time': 9539],
'path': 'path2',
'time': 23620,
'coordinates': ['x': 227.5, 'y': 420, 'time': 25228,
'x': 235, 'y': 418, 'time': 25426],
'path': 'path3',
'time': 35891,
'coordinates': ['x': 681.5, 'y': 431, 'time': 36648,
'x': 704.5, 'y': 427.5, 'time': 36661,
'x': 874.5, 'y': 420.5, 'time': 36714,
'x': 909.5, 'y': 422, 'time': 36734]],
'day2': 'path': 'path4',
'time': 36743,
'coordinates': ['x': 600, 'y': 622.5, 'time': 37390,
'x': 603, 'y': 594.5, 'time': 37448,
'x': 605, 'y': 541.5, 'time': 37478,
'x': 608.5, 'y': 481.5, 'time': 37495,
'x': 620, 'y': 369, 'time': 37530,
'x': 624.5, 'y': 329, 'time': 37547,
'x': 636, 'y': 366, 'time': 38043]


Now how can get a clean dataframe out of this json file?










share|improve this question
















I know there are quite similar questions so far, but I just don't get a right idea sorry.



I would like to convert a complex json to a clean pandas dataframe.



My Code so far:



with open('JSON_Input.json', 'r') as json_file:
json_data = json.load(json_file)
json_data = json.loads(json_data)



This creates the following complex, nested json object:



json_data 

'time': 0,
'day1': ['time': 0,
'coordinates': ['x': 1202.5, 'y': 486, 'time': 3276,
'x': 1162.5, 'y': 484, 'time': 3331,
'x': 742.5, 'y': 492.5, 'time': 3487,
'x': 673.5, 'y': 501.5, 'time': 3514,
'x': 636, 'y': 508.5, 'time': 3539],
'path': 'path1',
'time': 3558,
'coordinates': ['x': 1237, 'y': 173, 'time': 5437,
'x': 1240, 'y': 182, 'time': 5601,
'x': 1260, 'y': 161, 'time': 7289,
'x': 1263, 'y': 165, 'time': 7465,
'x': 1482, 'y': 114.5, 'time': 8072,
'x': 1482, 'y': 114, 'time': 8197,
'x': 1482, 'y': 126.5, 'time': 9539],
'path': 'path2',
'time': 23620,
'coordinates': ['x': 227.5, 'y': 420, 'time': 25228,
'x': 235, 'y': 418, 'time': 25426],
'path': 'path3',
'time': 35891,
'coordinates': ['x': 681.5, 'y': 431, 'time': 36648,
'x': 704.5, 'y': 427.5, 'time': 36661,
'x': 874.5, 'y': 420.5, 'time': 36714,
'x': 909.5, 'y': 422, 'time': 36734]],
'day2': 'path': 'path4',
'time': 36743,
'coordinates': ['x': 600, 'y': 622.5, 'time': 37390,
'x': 603, 'y': 594.5, 'time': 37448,
'x': 605, 'y': 541.5, 'time': 37478,
'x': 608.5, 'y': 481.5, 'time': 37495,
'x': 620, 'y': 369, 'time': 37530,
'x': 624.5, 'y': 329, 'time': 37547,
'x': 636, 'y': 366, 'time': 38043]


Now how can get a clean dataframe out of this json file?







python json






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Mar 26 at 12:32









penta

1,3232 gold badges11 silver badges33 bronze badges




1,3232 gold badges11 silver badges33 bronze badges










asked Mar 26 at 11:31









Larsus123Larsus123

11 bronze badge




11 bronze badge












  • show the desired dataframe output please

    – aws_apprentice
    Mar 26 at 11:32











  • That's the next problem. I was just given this json file and was told to analyze it and to make a dataframe that can be shown in Excel for example. Neither me nor my collegue knows the expected dataframe output =/

    – Larsus123
    Mar 26 at 11:42











  • that makes it kind of hard to help. so you can either provide context for exactly what it is you have to analyze or you go back to your boss and ask for more information

    – aws_apprentice
    Mar 26 at 11:44











  • Yes I will do that. Thanks for your time. When I have more information, I will write again.

    – Larsus123
    Mar 26 at 11:45











  • @Larsus123 any purticular reason why you are doing json_data = json.load(json_file) & json_data = json.loads(json_data)

    – penta
    Mar 26 at 12:10

















  • show the desired dataframe output please

    – aws_apprentice
    Mar 26 at 11:32











  • That's the next problem. I was just given this json file and was told to analyze it and to make a dataframe that can be shown in Excel for example. Neither me nor my collegue knows the expected dataframe output =/

    – Larsus123
    Mar 26 at 11:42











  • that makes it kind of hard to help. so you can either provide context for exactly what it is you have to analyze or you go back to your boss and ask for more information

    – aws_apprentice
    Mar 26 at 11:44











  • Yes I will do that. Thanks for your time. When I have more information, I will write again.

    – Larsus123
    Mar 26 at 11:45











  • @Larsus123 any purticular reason why you are doing json_data = json.load(json_file) & json_data = json.loads(json_data)

    – penta
    Mar 26 at 12:10
















show the desired dataframe output please

– aws_apprentice
Mar 26 at 11:32





show the desired dataframe output please

– aws_apprentice
Mar 26 at 11:32













That's the next problem. I was just given this json file and was told to analyze it and to make a dataframe that can be shown in Excel for example. Neither me nor my collegue knows the expected dataframe output =/

– Larsus123
Mar 26 at 11:42





That's the next problem. I was just given this json file and was told to analyze it and to make a dataframe that can be shown in Excel for example. Neither me nor my collegue knows the expected dataframe output =/

– Larsus123
Mar 26 at 11:42













that makes it kind of hard to help. so you can either provide context for exactly what it is you have to analyze or you go back to your boss and ask for more information

– aws_apprentice
Mar 26 at 11:44





that makes it kind of hard to help. so you can either provide context for exactly what it is you have to analyze or you go back to your boss and ask for more information

– aws_apprentice
Mar 26 at 11:44













Yes I will do that. Thanks for your time. When I have more information, I will write again.

– Larsus123
Mar 26 at 11:45





Yes I will do that. Thanks for your time. When I have more information, I will write again.

– Larsus123
Mar 26 at 11:45













@Larsus123 any purticular reason why you are doing json_data = json.load(json_file) & json_data = json.loads(json_data)

– penta
Mar 26 at 12:10





@Larsus123 any purticular reason why you are doing json_data = json.load(json_file) & json_data = json.loads(json_data)

– penta
Mar 26 at 12:10












1 Answer
1






active

oldest

votes


















0














This is tricky. You're going to end up with lots of nulls, and I also don't know exactly how you want the end datframe to look like. But maybe this can get you going in the right direction:



jsonObj = 'time': 0,
'day1': ['time': 0,
'coordinates': ['x': 1202.5, 'y': 486, 'time': 3276,
'x': 1162.5, 'y': 484, 'time': 3331,
'x': 742.5, 'y': 492.5, 'time': 3487,
'x': 673.5, 'y': 501.5, 'time': 3514,
'x': 636, 'y': 508.5, 'time': 3539],
'path': 'path1',
'time': 3558,
'coordinates': ['x': 1237, 'y': 173, 'time': 5437,
'x': 1240, 'y': 182, 'time': 5601,
'x': 1260, 'y': 161, 'time': 7289,
'x': 1263, 'y': 165, 'time': 7465,
'x': 1482, 'y': 114.5, 'time': 8072,
'x': 1482, 'y': 114, 'time': 8197,
'x': 1482, 'y': 126.5, 'time': 9539],
'path': 'path2',
'time': 23620,
'coordinates': ['x': 227.5, 'y': 420, 'time': 25228,
'x': 235, 'y': 418, 'time': 25426],
'path': 'path3',
'time': 35891,
'coordinates': ['x': 681.5, 'y': 431, 'time': 36648,
'x': 704.5, 'y': 427.5, 'time': 36661,
'x': 874.5, 'y': 420.5, 'time': 36714,
'x': 909.5, 'y': 422, 'time': 36734]],
'day2': 'path': 'path4',
'time': 36743,
'coordinates': ['x': 600, 'y': 622.5, 'time': 37390,
'x': 603, 'y': 594.5, 'time': 37448,
'x': 605, 'y': 541.5, 'time': 37478,
'x': 608.5, 'y': 481.5, 'time': 37495,
'x': 620, 'y': 369, 'time': 37530,
'x': 624.5, 'y': 329, 'time': 37547,
'x': 636, 'y': 366, 'time': 38043]










import pandas as pd
import re


def flatten_json(y):
out =

def flatten(x, name=''):
if type(x) is dict:
for a in x:
flatten(x[a], name + a + '_')
elif type(x) is list:
i = 0
for a in x:
flatten(a, name + str(i) + '_')
i += 1
else:
out[name[:-1]] = x

flatten(y)
return out

results = pd.DataFrame()
for k in jsonObj:

flat = flatten_json(jsonObj[k])


temp_df = pd.DataFrame()
special_cols = []

columns_list = list(flat.keys())
for item in columns_list:
try:
row_idx = re.findall(r'_(d+)_', item )[0]
except:
special_cols.append(item)
continue
column = re.findall(r'_d+_(.*)', item )[0]
column = column.replace('_', '')

row_idx = int(row_idx)
value = flat[item]

temp_df.loc[row_idx, column] = value

for item in special_cols:
temp_df[item] = flat[item]

if 'day' in k:
temp_df['day'] = k
results = results.append(temp_df).reset_index(drop=True)

results = results.dropna(axis=1, how='all')





share|improve this answer























  • Thank you for your support. I found a way program a little bit around and get some insights. If this problem scales up, I am gonna try your code, which looks a lot more efficient than mine. Thanks again!

    – Larsus123
    Mar 27 at 12:52










Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55356104%2fis-there-a-possibility-to-convert-complex-json-to-pandas-dataframe%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0














This is tricky. You're going to end up with lots of nulls, and I also don't know exactly how you want the end datframe to look like. But maybe this can get you going in the right direction:



jsonObj = 'time': 0,
'day1': ['time': 0,
'coordinates': ['x': 1202.5, 'y': 486, 'time': 3276,
'x': 1162.5, 'y': 484, 'time': 3331,
'x': 742.5, 'y': 492.5, 'time': 3487,
'x': 673.5, 'y': 501.5, 'time': 3514,
'x': 636, 'y': 508.5, 'time': 3539],
'path': 'path1',
'time': 3558,
'coordinates': ['x': 1237, 'y': 173, 'time': 5437,
'x': 1240, 'y': 182, 'time': 5601,
'x': 1260, 'y': 161, 'time': 7289,
'x': 1263, 'y': 165, 'time': 7465,
'x': 1482, 'y': 114.5, 'time': 8072,
'x': 1482, 'y': 114, 'time': 8197,
'x': 1482, 'y': 126.5, 'time': 9539],
'path': 'path2',
'time': 23620,
'coordinates': ['x': 227.5, 'y': 420, 'time': 25228,
'x': 235, 'y': 418, 'time': 25426],
'path': 'path3',
'time': 35891,
'coordinates': ['x': 681.5, 'y': 431, 'time': 36648,
'x': 704.5, 'y': 427.5, 'time': 36661,
'x': 874.5, 'y': 420.5, 'time': 36714,
'x': 909.5, 'y': 422, 'time': 36734]],
'day2': 'path': 'path4',
'time': 36743,
'coordinates': ['x': 600, 'y': 622.5, 'time': 37390,
'x': 603, 'y': 594.5, 'time': 37448,
'x': 605, 'y': 541.5, 'time': 37478,
'x': 608.5, 'y': 481.5, 'time': 37495,
'x': 620, 'y': 369, 'time': 37530,
'x': 624.5, 'y': 329, 'time': 37547,
'x': 636, 'y': 366, 'time': 38043]










import pandas as pd
import re


def flatten_json(y):
out =

def flatten(x, name=''):
if type(x) is dict:
for a in x:
flatten(x[a], name + a + '_')
elif type(x) is list:
i = 0
for a in x:
flatten(a, name + str(i) + '_')
i += 1
else:
out[name[:-1]] = x

flatten(y)
return out

results = pd.DataFrame()
for k in jsonObj:

flat = flatten_json(jsonObj[k])


temp_df = pd.DataFrame()
special_cols = []

columns_list = list(flat.keys())
for item in columns_list:
try:
row_idx = re.findall(r'_(d+)_', item )[0]
except:
special_cols.append(item)
continue
column = re.findall(r'_d+_(.*)', item )[0]
column = column.replace('_', '')

row_idx = int(row_idx)
value = flat[item]

temp_df.loc[row_idx, column] = value

for item in special_cols:
temp_df[item] = flat[item]

if 'day' in k:
temp_df['day'] = k
results = results.append(temp_df).reset_index(drop=True)

results = results.dropna(axis=1, how='all')





share|improve this answer























  • Thank you for your support. I found a way program a little bit around and get some insights. If this problem scales up, I am gonna try your code, which looks a lot more efficient than mine. Thanks again!

    – Larsus123
    Mar 27 at 12:52















0














This is tricky. You're going to end up with lots of nulls, and I also don't know exactly how you want the end datframe to look like. But maybe this can get you going in the right direction:



jsonObj = 'time': 0,
'day1': ['time': 0,
'coordinates': ['x': 1202.5, 'y': 486, 'time': 3276,
'x': 1162.5, 'y': 484, 'time': 3331,
'x': 742.5, 'y': 492.5, 'time': 3487,
'x': 673.5, 'y': 501.5, 'time': 3514,
'x': 636, 'y': 508.5, 'time': 3539],
'path': 'path1',
'time': 3558,
'coordinates': ['x': 1237, 'y': 173, 'time': 5437,
'x': 1240, 'y': 182, 'time': 5601,
'x': 1260, 'y': 161, 'time': 7289,
'x': 1263, 'y': 165, 'time': 7465,
'x': 1482, 'y': 114.5, 'time': 8072,
'x': 1482, 'y': 114, 'time': 8197,
'x': 1482, 'y': 126.5, 'time': 9539],
'path': 'path2',
'time': 23620,
'coordinates': ['x': 227.5, 'y': 420, 'time': 25228,
'x': 235, 'y': 418, 'time': 25426],
'path': 'path3',
'time': 35891,
'coordinates': ['x': 681.5, 'y': 431, 'time': 36648,
'x': 704.5, 'y': 427.5, 'time': 36661,
'x': 874.5, 'y': 420.5, 'time': 36714,
'x': 909.5, 'y': 422, 'time': 36734]],
'day2': 'path': 'path4',
'time': 36743,
'coordinates': ['x': 600, 'y': 622.5, 'time': 37390,
'x': 603, 'y': 594.5, 'time': 37448,
'x': 605, 'y': 541.5, 'time': 37478,
'x': 608.5, 'y': 481.5, 'time': 37495,
'x': 620, 'y': 369, 'time': 37530,
'x': 624.5, 'y': 329, 'time': 37547,
'x': 636, 'y': 366, 'time': 38043]










import pandas as pd
import re


def flatten_json(y):
out =

def flatten(x, name=''):
if type(x) is dict:
for a in x:
flatten(x[a], name + a + '_')
elif type(x) is list:
i = 0
for a in x:
flatten(a, name + str(i) + '_')
i += 1
else:
out[name[:-1]] = x

flatten(y)
return out

results = pd.DataFrame()
for k in jsonObj:

flat = flatten_json(jsonObj[k])


temp_df = pd.DataFrame()
special_cols = []

columns_list = list(flat.keys())
for item in columns_list:
try:
row_idx = re.findall(r'_(d+)_', item )[0]
except:
special_cols.append(item)
continue
column = re.findall(r'_d+_(.*)', item )[0]
column = column.replace('_', '')

row_idx = int(row_idx)
value = flat[item]

temp_df.loc[row_idx, column] = value

for item in special_cols:
temp_df[item] = flat[item]

if 'day' in k:
temp_df['day'] = k
results = results.append(temp_df).reset_index(drop=True)

results = results.dropna(axis=1, how='all')





share|improve this answer























  • Thank you for your support. I found a way program a little bit around and get some insights. If this problem scales up, I am gonna try your code, which looks a lot more efficient than mine. Thanks again!

    – Larsus123
    Mar 27 at 12:52













0












0








0







This is tricky. You're going to end up with lots of nulls, and I also don't know exactly how you want the end datframe to look like. But maybe this can get you going in the right direction:



jsonObj = 'time': 0,
'day1': ['time': 0,
'coordinates': ['x': 1202.5, 'y': 486, 'time': 3276,
'x': 1162.5, 'y': 484, 'time': 3331,
'x': 742.5, 'y': 492.5, 'time': 3487,
'x': 673.5, 'y': 501.5, 'time': 3514,
'x': 636, 'y': 508.5, 'time': 3539],
'path': 'path1',
'time': 3558,
'coordinates': ['x': 1237, 'y': 173, 'time': 5437,
'x': 1240, 'y': 182, 'time': 5601,
'x': 1260, 'y': 161, 'time': 7289,
'x': 1263, 'y': 165, 'time': 7465,
'x': 1482, 'y': 114.5, 'time': 8072,
'x': 1482, 'y': 114, 'time': 8197,
'x': 1482, 'y': 126.5, 'time': 9539],
'path': 'path2',
'time': 23620,
'coordinates': ['x': 227.5, 'y': 420, 'time': 25228,
'x': 235, 'y': 418, 'time': 25426],
'path': 'path3',
'time': 35891,
'coordinates': ['x': 681.5, 'y': 431, 'time': 36648,
'x': 704.5, 'y': 427.5, 'time': 36661,
'x': 874.5, 'y': 420.5, 'time': 36714,
'x': 909.5, 'y': 422, 'time': 36734]],
'day2': 'path': 'path4',
'time': 36743,
'coordinates': ['x': 600, 'y': 622.5, 'time': 37390,
'x': 603, 'y': 594.5, 'time': 37448,
'x': 605, 'y': 541.5, 'time': 37478,
'x': 608.5, 'y': 481.5, 'time': 37495,
'x': 620, 'y': 369, 'time': 37530,
'x': 624.5, 'y': 329, 'time': 37547,
'x': 636, 'y': 366, 'time': 38043]










import pandas as pd
import re


def flatten_json(y):
out =

def flatten(x, name=''):
if type(x) is dict:
for a in x:
flatten(x[a], name + a + '_')
elif type(x) is list:
i = 0
for a in x:
flatten(a, name + str(i) + '_')
i += 1
else:
out[name[:-1]] = x

flatten(y)
return out

results = pd.DataFrame()
for k in jsonObj:

flat = flatten_json(jsonObj[k])


temp_df = pd.DataFrame()
special_cols = []

columns_list = list(flat.keys())
for item in columns_list:
try:
row_idx = re.findall(r'_(d+)_', item )[0]
except:
special_cols.append(item)
continue
column = re.findall(r'_d+_(.*)', item )[0]
column = column.replace('_', '')

row_idx = int(row_idx)
value = flat[item]

temp_df.loc[row_idx, column] = value

for item in special_cols:
temp_df[item] = flat[item]

if 'day' in k:
temp_df['day'] = k
results = results.append(temp_df).reset_index(drop=True)

results = results.dropna(axis=1, how='all')





share|improve this answer













This is tricky. You're going to end up with lots of nulls, and I also don't know exactly how you want the end datframe to look like. But maybe this can get you going in the right direction:



jsonObj = 'time': 0,
'day1': ['time': 0,
'coordinates': ['x': 1202.5, 'y': 486, 'time': 3276,
'x': 1162.5, 'y': 484, 'time': 3331,
'x': 742.5, 'y': 492.5, 'time': 3487,
'x': 673.5, 'y': 501.5, 'time': 3514,
'x': 636, 'y': 508.5, 'time': 3539],
'path': 'path1',
'time': 3558,
'coordinates': ['x': 1237, 'y': 173, 'time': 5437,
'x': 1240, 'y': 182, 'time': 5601,
'x': 1260, 'y': 161, 'time': 7289,
'x': 1263, 'y': 165, 'time': 7465,
'x': 1482, 'y': 114.5, 'time': 8072,
'x': 1482, 'y': 114, 'time': 8197,
'x': 1482, 'y': 126.5, 'time': 9539],
'path': 'path2',
'time': 23620,
'coordinates': ['x': 227.5, 'y': 420, 'time': 25228,
'x': 235, 'y': 418, 'time': 25426],
'path': 'path3',
'time': 35891,
'coordinates': ['x': 681.5, 'y': 431, 'time': 36648,
'x': 704.5, 'y': 427.5, 'time': 36661,
'x': 874.5, 'y': 420.5, 'time': 36714,
'x': 909.5, 'y': 422, 'time': 36734]],
'day2': 'path': 'path4',
'time': 36743,
'coordinates': ['x': 600, 'y': 622.5, 'time': 37390,
'x': 603, 'y': 594.5, 'time': 37448,
'x': 605, 'y': 541.5, 'time': 37478,
'x': 608.5, 'y': 481.5, 'time': 37495,
'x': 620, 'y': 369, 'time': 37530,
'x': 624.5, 'y': 329, 'time': 37547,
'x': 636, 'y': 366, 'time': 38043]










import pandas as pd
import re


def flatten_json(y):
out =

def flatten(x, name=''):
if type(x) is dict:
for a in x:
flatten(x[a], name + a + '_')
elif type(x) is list:
i = 0
for a in x:
flatten(a, name + str(i) + '_')
i += 1
else:
out[name[:-1]] = x

flatten(y)
return out

results = pd.DataFrame()
for k in jsonObj:

flat = flatten_json(jsonObj[k])


temp_df = pd.DataFrame()
special_cols = []

columns_list = list(flat.keys())
for item in columns_list:
try:
row_idx = re.findall(r'_(d+)_', item )[0]
except:
special_cols.append(item)
continue
column = re.findall(r'_d+_(.*)', item )[0]
column = column.replace('_', '')

row_idx = int(row_idx)
value = flat[item]

temp_df.loc[row_idx, column] = value

for item in special_cols:
temp_df[item] = flat[item]

if 'day' in k:
temp_df['day'] = k
results = results.append(temp_df).reset_index(drop=True)

results = results.dropna(axis=1, how='all')






share|improve this answer












share|improve this answer



share|improve this answer










answered Mar 26 at 14:57









chitown88chitown88

7,6591 gold badge6 silver badges28 bronze badges




7,6591 gold badge6 silver badges28 bronze badges












  • Thank you for your support. I found a way program a little bit around and get some insights. If this problem scales up, I am gonna try your code, which looks a lot more efficient than mine. Thanks again!

    – Larsus123
    Mar 27 at 12:52

















  • Thank you for your support. I found a way program a little bit around and get some insights. If this problem scales up, I am gonna try your code, which looks a lot more efficient than mine. Thanks again!

    – Larsus123
    Mar 27 at 12:52
















Thank you for your support. I found a way program a little bit around and get some insights. If this problem scales up, I am gonna try your code, which looks a lot more efficient than mine. Thanks again!

– Larsus123
Mar 27 at 12:52





Thank you for your support. I found a way program a little bit around and get some insights. If this problem scales up, I am gonna try your code, which looks a lot more efficient than mine. Thanks again!

– Larsus123
Mar 27 at 12:52






Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.







Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.



















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55356104%2fis-there-a-possibility-to-convert-complex-json-to-pandas-dataframe%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현