Specific numerical eigenfunctions of Helmholtz equation in 3D for ellipsoidsNumerically solving Helmholtz equation in 3D for arbitrary shapesSolving the Helmholtz equation in polar coordinatesNumerically solving Helmholtz equation in 2D for arbitrary shapesNumerically solving Helmholtz equation in 3D for arbitrary shapesFinite Element Mass and Stiffness MatricesNDEigensystem producing imaginary eigenfrequencies for the vibrations of a cantileverNumerically Solving Helmholtz over the Rectangle - Why does this code only give eigenfunctions of the form $u_m1$failure of code with Helmholtz equation with point sourceComparing analytical solution with numerical solution of Helmholtz equation in a unit squareNDSolve post-processing: Calculate the flow over a FEM-boundaryNumerical methods to solve a continuity equation
Help evaluating integral (anything simple that I am missing?)
Withdrew when Jimmy met up with Heath
During the Space Shuttle Columbia Disaster of 2003, Why Did The Flight Director Say, "Lock the doors."?
Am I overreacting to my team leader's unethical requests?
(11 of 11: Meta) What is Pyramid Cult's All-Time Favorite?
Why isn’t SHA-3 in wider use?
Team goes to lunch frequently, I do intermittent fasting but still want to socialize
Y2K... in 2019?
How does "Te vas a cansar" mean "You're going to get tired"?
how to differentiate when a child lwc component is called twice in parent component?
Should I ask for permission to write an expository post about someone's else research?
What game uses dice with sides powers of 2?
Ex-contractor published company source code and secrets online
What are the conventions for transcribing Semitic languages into Greek?
How to mark beverage cans in a cooler for a blind person?
Can a fight scene, component-wise, be too complex and complicated?
Is TA-ing worth the opportunity cost?
Tikzpicture - finish drawing a curved line for a cake slice
How to create all combinations from a nested list while preserving the structure using R?
Christian apologetics regarding the killing of innocent children during the Genesis flood
How can I iterate this process?
Wherein the Shatapatha Brahmana it was mentioned about 8.64 lakh alphabets in Vedas?
Why doesn't the "ch" pronunciation rule occur for words such as "durch" and "manchmal"?
Is Texas Instrument wrong with their pin number on TO-92 package?
Specific numerical eigenfunctions of Helmholtz equation in 3D for ellipsoids
Numerically solving Helmholtz equation in 3D for arbitrary shapesSolving the Helmholtz equation in polar coordinatesNumerically solving Helmholtz equation in 2D for arbitrary shapesNumerically solving Helmholtz equation in 3D for arbitrary shapesFinite Element Mass and Stiffness MatricesNDEigensystem producing imaginary eigenfrequencies for the vibrations of a cantileverNumerically Solving Helmholtz over the Rectangle - Why does this code only give eigenfunctions of the form $u_m1$failure of code with Helmholtz equation with point sourceComparing analytical solution with numerical solution of Helmholtz equation in a unit squareNDSolve post-processing: Calculate the flow over a FEM-boundaryNumerical methods to solve a continuity equation
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?
Here is my code for the first 4 eigenmodes:
Needs["NDSolve`FEM`"];
helmholzSolve3D[g_, numEigenToCompute_Integer,
opts : OptionsPattern[]] :=
Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
numEigen, res, eigenValues, eigenVectors,
evIF,
(*Discretize the region*)
If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
boundaryMesh = ToBoundaryMesh[mesh];
(*Set up the PDE and boundary condition*)
pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
u[t, x, y, z] == 0;
dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
(*Pre-process the equations to obtain the FiniteElementData in
StateData*)nr = ToNumericalRegion[mesh];
state =
NDSolve`ProcessEquations[pde, dirichletCondition,
u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
femdata = state["FiniteElementData"];
initBCs = femdata["BoundaryConditionData"];
methodData = femdata["FEMMethodData"];
initCoeffs = femdata["PDECoefficientData"];
(*Set up the solution*)vd = methodData["VariableData"];
sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];
(*Discretize the PDE and boundary conditions*)
discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];
(*Extract the relevant matrices and deploy the boundary conditions*)
load = discretePDE["LoadVector"];
stiffness = discretePDE["StiffnessMatrix"];
damping = discretePDE["DampingMatrix"];
DeployBoundaryConditions[load, stiffness, damping, discreteBCs];
(*Set the number of eigenvalues ignoring the Dirichlet positions*)
pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
nDiri = Length[pos];
numEigen = numEigenToCompute + nDiri;
(*Solve the eigensystem*)
res = Eigensystem[stiffness, damping, -numEigen];
res = Reverse /@ res;
eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;
(*Return the relevant information*)
eigenValues, evIF, mesh]
ev, if, mesh =
helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
MaxCellMeasure -> 0.025]
Table[
DensityPlot[
if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> ev[i] ,
ColorFunction -> Hue,
PlotLegends -> Automatic
],
i, 1, 4
]
Any suggestions?
differential-equations numerics finite-element-method
$endgroup$
add a comment |
$begingroup$
I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?
Here is my code for the first 4 eigenmodes:
Needs["NDSolve`FEM`"];
helmholzSolve3D[g_, numEigenToCompute_Integer,
opts : OptionsPattern[]] :=
Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
numEigen, res, eigenValues, eigenVectors,
evIF,
(*Discretize the region*)
If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
boundaryMesh = ToBoundaryMesh[mesh];
(*Set up the PDE and boundary condition*)
pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
u[t, x, y, z] == 0;
dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
(*Pre-process the equations to obtain the FiniteElementData in
StateData*)nr = ToNumericalRegion[mesh];
state =
NDSolve`ProcessEquations[pde, dirichletCondition,
u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
femdata = state["FiniteElementData"];
initBCs = femdata["BoundaryConditionData"];
methodData = femdata["FEMMethodData"];
initCoeffs = femdata["PDECoefficientData"];
(*Set up the solution*)vd = methodData["VariableData"];
sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];
(*Discretize the PDE and boundary conditions*)
discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];
(*Extract the relevant matrices and deploy the boundary conditions*)
load = discretePDE["LoadVector"];
stiffness = discretePDE["StiffnessMatrix"];
damping = discretePDE["DampingMatrix"];
DeployBoundaryConditions[load, stiffness, damping, discreteBCs];
(*Set the number of eigenvalues ignoring the Dirichlet positions*)
pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
nDiri = Length[pos];
numEigen = numEigenToCompute + nDiri;
(*Solve the eigensystem*)
res = Eigensystem[stiffness, damping, -numEigen];
res = Reverse /@ res;
eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;
(*Return the relevant information*)
eigenValues, evIF, mesh]
ev, if, mesh =
helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
MaxCellMeasure -> 0.025]
Table[
DensityPlot[
if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> ev[i] ,
ColorFunction -> Hue,
PlotLegends -> Automatic
],
i, 1, 4
]
Any suggestions?
differential-equations numerics finite-element-method
$endgroup$
add a comment |
$begingroup$
I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?
Here is my code for the first 4 eigenmodes:
Needs["NDSolve`FEM`"];
helmholzSolve3D[g_, numEigenToCompute_Integer,
opts : OptionsPattern[]] :=
Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
numEigen, res, eigenValues, eigenVectors,
evIF,
(*Discretize the region*)
If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
boundaryMesh = ToBoundaryMesh[mesh];
(*Set up the PDE and boundary condition*)
pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
u[t, x, y, z] == 0;
dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
(*Pre-process the equations to obtain the FiniteElementData in
StateData*)nr = ToNumericalRegion[mesh];
state =
NDSolve`ProcessEquations[pde, dirichletCondition,
u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
femdata = state["FiniteElementData"];
initBCs = femdata["BoundaryConditionData"];
methodData = femdata["FEMMethodData"];
initCoeffs = femdata["PDECoefficientData"];
(*Set up the solution*)vd = methodData["VariableData"];
sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];
(*Discretize the PDE and boundary conditions*)
discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];
(*Extract the relevant matrices and deploy the boundary conditions*)
load = discretePDE["LoadVector"];
stiffness = discretePDE["StiffnessMatrix"];
damping = discretePDE["DampingMatrix"];
DeployBoundaryConditions[load, stiffness, damping, discreteBCs];
(*Set the number of eigenvalues ignoring the Dirichlet positions*)
pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
nDiri = Length[pos];
numEigen = numEigenToCompute + nDiri;
(*Solve the eigensystem*)
res = Eigensystem[stiffness, damping, -numEigen];
res = Reverse /@ res;
eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;
(*Return the relevant information*)
eigenValues, evIF, mesh]
ev, if, mesh =
helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
MaxCellMeasure -> 0.025]
Table[
DensityPlot[
if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> ev[i] ,
ColorFunction -> Hue,
PlotLegends -> Automatic
],
i, 1, 4
]
Any suggestions?
differential-equations numerics finite-element-method
$endgroup$
I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?
Here is my code for the first 4 eigenmodes:
Needs["NDSolve`FEM`"];
helmholzSolve3D[g_, numEigenToCompute_Integer,
opts : OptionsPattern[]] :=
Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
numEigen, res, eigenValues, eigenVectors,
evIF,
(*Discretize the region*)
If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
boundaryMesh = ToBoundaryMesh[mesh];
(*Set up the PDE and boundary condition*)
pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
u[t, x, y, z] == 0;
dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
(*Pre-process the equations to obtain the FiniteElementData in
StateData*)nr = ToNumericalRegion[mesh];
state =
NDSolve`ProcessEquations[pde, dirichletCondition,
u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
femdata = state["FiniteElementData"];
initBCs = femdata["BoundaryConditionData"];
methodData = femdata["FEMMethodData"];
initCoeffs = femdata["PDECoefficientData"];
(*Set up the solution*)vd = methodData["VariableData"];
sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];
(*Discretize the PDE and boundary conditions*)
discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];
(*Extract the relevant matrices and deploy the boundary conditions*)
load = discretePDE["LoadVector"];
stiffness = discretePDE["StiffnessMatrix"];
damping = discretePDE["DampingMatrix"];
DeployBoundaryConditions[load, stiffness, damping, discreteBCs];
(*Set the number of eigenvalues ignoring the Dirichlet positions*)
pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
nDiri = Length[pos];
numEigen = numEigenToCompute + nDiri;
(*Solve the eigensystem*)
res = Eigensystem[stiffness, damping, -numEigen];
res = Reverse /@ res;
eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;
(*Return the relevant information*)
eigenValues, evIF, mesh]
ev, if, mesh =
helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
MaxCellMeasure -> 0.025]
Table[
DensityPlot[
if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> ev[i] ,
ColorFunction -> Hue,
PlotLegends -> Automatic
],
i, 1, 4
]
Any suggestions?
differential-equations numerics finite-element-method
differential-equations numerics finite-element-method
edited Mar 29 at 11:18
user64494
1
1
asked Mar 26 at 22:24
anon
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You could use something like this:
vals, funs =
NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
DirichletCondition[u[x, y, z] == 0, True], u,
Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]
427.961, 428.783, 430.026, 430.156,...
And here are the density plots:
Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> vals[[i]], ColorFunction -> Hue,
PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]
Slice density plots:
Table[SliceDensityPlot3D[funs[[i]][x, y, z],
Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
PlotRange -> All, PlotLabel -> vals[[i]],
PlotTheme -> "Minimal"], i, Length[vals]]
And density plots:
Table[DensityPlot3D[funs[[i]][x, y, z],
Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
PlotRange -> All, PlotLabel -> vals[[i]],
PlotTheme -> "Minimal"], i, Length[vals]]
$endgroup$
$begingroup$
Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
$endgroup$
– anon
Mar 28 at 19:26
$begingroup$
@GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter.NDEigensystem
makes use ifEigensystem
(like in your code) which then uses FEAST from a library.
$endgroup$
– user21
Mar 29 at 5:36
$begingroup$
OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
$endgroup$
– anon
Mar 29 at 10:16
$begingroup$
@GeorgeGiannoulis, it's the ellipsoidI have updated the code.
$endgroup$
– user21
Mar 29 at 10:23
$begingroup$
Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
$endgroup$
– anon
Mar 29 at 10:58
|
show 6 more comments
$begingroup$
You may try Eigensystem
with
Method -> "FEAST", "Interval" -> a, b
to search eigenvalue pairs within an interval. See the documentation of Eigensystem
, Section "Methods", Subsection "FEAST" for more details.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194006%2fspecific-numerical-eigenfunctions-of-helmholtz-equation-in-3d-for-ellipsoids%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You could use something like this:
vals, funs =
NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
DirichletCondition[u[x, y, z] == 0, True], u,
Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]
427.961, 428.783, 430.026, 430.156,...
And here are the density plots:
Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> vals[[i]], ColorFunction -> Hue,
PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]
Slice density plots:
Table[SliceDensityPlot3D[funs[[i]][x, y, z],
Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
PlotRange -> All, PlotLabel -> vals[[i]],
PlotTheme -> "Minimal"], i, Length[vals]]
And density plots:
Table[DensityPlot3D[funs[[i]][x, y, z],
Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
PlotRange -> All, PlotLabel -> vals[[i]],
PlotTheme -> "Minimal"], i, Length[vals]]
$endgroup$
$begingroup$
Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
$endgroup$
– anon
Mar 28 at 19:26
$begingroup$
@GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter.NDEigensystem
makes use ifEigensystem
(like in your code) which then uses FEAST from a library.
$endgroup$
– user21
Mar 29 at 5:36
$begingroup$
OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
$endgroup$
– anon
Mar 29 at 10:16
$begingroup$
@GeorgeGiannoulis, it's the ellipsoidI have updated the code.
$endgroup$
– user21
Mar 29 at 10:23
$begingroup$
Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
$endgroup$
– anon
Mar 29 at 10:58
|
show 6 more comments
$begingroup$
You could use something like this:
vals, funs =
NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
DirichletCondition[u[x, y, z] == 0, True], u,
Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]
427.961, 428.783, 430.026, 430.156,...
And here are the density plots:
Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> vals[[i]], ColorFunction -> Hue,
PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]
Slice density plots:
Table[SliceDensityPlot3D[funs[[i]][x, y, z],
Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
PlotRange -> All, PlotLabel -> vals[[i]],
PlotTheme -> "Minimal"], i, Length[vals]]
And density plots:
Table[DensityPlot3D[funs[[i]][x, y, z],
Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
PlotRange -> All, PlotLabel -> vals[[i]],
PlotTheme -> "Minimal"], i, Length[vals]]
$endgroup$
$begingroup$
Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
$endgroup$
– anon
Mar 28 at 19:26
$begingroup$
@GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter.NDEigensystem
makes use ifEigensystem
(like in your code) which then uses FEAST from a library.
$endgroup$
– user21
Mar 29 at 5:36
$begingroup$
OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
$endgroup$
– anon
Mar 29 at 10:16
$begingroup$
@GeorgeGiannoulis, it's the ellipsoidI have updated the code.
$endgroup$
– user21
Mar 29 at 10:23
$begingroup$
Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
$endgroup$
– anon
Mar 29 at 10:58
|
show 6 more comments
$begingroup$
You could use something like this:
vals, funs =
NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
DirichletCondition[u[x, y, z] == 0, True], u,
Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]
427.961, 428.783, 430.026, 430.156,...
And here are the density plots:
Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> vals[[i]], ColorFunction -> Hue,
PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]
Slice density plots:
Table[SliceDensityPlot3D[funs[[i]][x, y, z],
Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
PlotRange -> All, PlotLabel -> vals[[i]],
PlotTheme -> "Minimal"], i, Length[vals]]
And density plots:
Table[DensityPlot3D[funs[[i]][x, y, z],
Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
PlotRange -> All, PlotLabel -> vals[[i]],
PlotTheme -> "Minimal"], i, Length[vals]]
$endgroup$
You could use something like this:
vals, funs =
NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
DirichletCondition[u[x, y, z] == 0, True], u,
Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]
427.961, 428.783, 430.026, 430.156,...
And here are the density plots:
Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> vals[[i]], ColorFunction -> Hue,
PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]
Slice density plots:
Table[SliceDensityPlot3D[funs[[i]][x, y, z],
Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
PlotRange -> All, PlotLabel -> vals[[i]],
PlotTheme -> "Minimal"], i, Length[vals]]
And density plots:
Table[DensityPlot3D[funs[[i]][x, y, z],
Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
PlotRange -> All, PlotLabel -> vals[[i]],
PlotTheme -> "Minimal"], i, Length[vals]]
edited Mar 29 at 12:55
answered Mar 27 at 6:31
user21user21
23.1k7 gold badges67 silver badges107 bronze badges
23.1k7 gold badges67 silver badges107 bronze badges
$begingroup$
Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
$endgroup$
– anon
Mar 28 at 19:26
$begingroup$
@GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter.NDEigensystem
makes use ifEigensystem
(like in your code) which then uses FEAST from a library.
$endgroup$
– user21
Mar 29 at 5:36
$begingroup$
OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
$endgroup$
– anon
Mar 29 at 10:16
$begingroup$
@GeorgeGiannoulis, it's the ellipsoidI have updated the code.
$endgroup$
– user21
Mar 29 at 10:23
$begingroup$
Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
$endgroup$
– anon
Mar 29 at 10:58
|
show 6 more comments
$begingroup$
Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
$endgroup$
– anon
Mar 28 at 19:26
$begingroup$
@GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter.NDEigensystem
makes use ifEigensystem
(like in your code) which then uses FEAST from a library.
$endgroup$
– user21
Mar 29 at 5:36
$begingroup$
OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
$endgroup$
– anon
Mar 29 at 10:16
$begingroup$
@GeorgeGiannoulis, it's the ellipsoidI have updated the code.
$endgroup$
– user21
Mar 29 at 10:23
$begingroup$
Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
$endgroup$
– anon
Mar 29 at 10:58
$begingroup$
Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
$endgroup$
– anon
Mar 28 at 19:26
$begingroup$
Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
$endgroup$
– anon
Mar 28 at 19:26
$begingroup$
@GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter.
NDEigensystem
makes use if Eigensystem
(like in your code) which then uses FEAST from a library.$endgroup$
– user21
Mar 29 at 5:36
$begingroup$
@GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter.
NDEigensystem
makes use if Eigensystem
(like in your code) which then uses FEAST from a library.$endgroup$
– user21
Mar 29 at 5:36
$begingroup$
OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
$endgroup$
– anon
Mar 29 at 10:16
$begingroup$
OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
$endgroup$
– anon
Mar 29 at 10:16
$begingroup$
@GeorgeGiannoulis, it's the ellipsoidI have updated the code.
$endgroup$
– user21
Mar 29 at 10:23
$begingroup$
@GeorgeGiannoulis, it's the ellipsoidI have updated the code.
$endgroup$
– user21
Mar 29 at 10:23
$begingroup$
Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
$endgroup$
– anon
Mar 29 at 10:58
$begingroup$
Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
$endgroup$
– anon
Mar 29 at 10:58
|
show 6 more comments
$begingroup$
You may try Eigensystem
with
Method -> "FEAST", "Interval" -> a, b
to search eigenvalue pairs within an interval. See the documentation of Eigensystem
, Section "Methods", Subsection "FEAST" for more details.
$endgroup$
add a comment |
$begingroup$
You may try Eigensystem
with
Method -> "FEAST", "Interval" -> a, b
to search eigenvalue pairs within an interval. See the documentation of Eigensystem
, Section "Methods", Subsection "FEAST" for more details.
$endgroup$
add a comment |
$begingroup$
You may try Eigensystem
with
Method -> "FEAST", "Interval" -> a, b
to search eigenvalue pairs within an interval. See the documentation of Eigensystem
, Section "Methods", Subsection "FEAST" for more details.
$endgroup$
You may try Eigensystem
with
Method -> "FEAST", "Interval" -> a, b
to search eigenvalue pairs within an interval. See the documentation of Eigensystem
, Section "Methods", Subsection "FEAST" for more details.
edited Mar 27 at 7:23
answered Mar 26 at 22:32
Henrik SchumacherHenrik Schumacher
67.1k5 gold badges96 silver badges185 bronze badges
67.1k5 gold badges96 silver badges185 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194006%2fspecific-numerical-eigenfunctions-of-helmholtz-equation-in-3d-for-ellipsoids%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown