Specific numerical eigenfunctions of Helmholtz equation in 3D for ellipsoidsNumerically solving Helmholtz equation in 3D for arbitrary shapesSolving the Helmholtz equation in polar coordinatesNumerically solving Helmholtz equation in 2D for arbitrary shapesNumerically solving Helmholtz equation in 3D for arbitrary shapesFinite Element Mass and Stiffness MatricesNDEigensystem producing imaginary eigenfrequencies for the vibrations of a cantileverNumerically Solving Helmholtz over the Rectangle - Why does this code only give eigenfunctions of the form $u_m1$failure of code with Helmholtz equation with point sourceComparing analytical solution with numerical solution of Helmholtz equation in a unit squareNDSolve post-processing: Calculate the flow over a FEM-boundaryNumerical methods to solve a continuity equation

Help evaluating integral (anything simple that I am missing?)

Withdrew when Jimmy met up with Heath

During the Space Shuttle Columbia Disaster of 2003, Why Did The Flight Director Say, "Lock the doors."?

Am I overreacting to my team leader's unethical requests?

(11 of 11: Meta) What is Pyramid Cult's All-Time Favorite?

Why isn’t SHA-3 in wider use?

Team goes to lunch frequently, I do intermittent fasting but still want to socialize

Y2K... in 2019?

How does "Te vas a cansar" mean "You're going to get tired"?

how to differentiate when a child lwc component is called twice in parent component?

Should I ask for permission to write an expository post about someone's else research?

What game uses dice with sides powers of 2?

Ex-contractor published company source code and secrets online

What are the conventions for transcribing Semitic languages into Greek?

How to mark beverage cans in a cooler for a blind person?

Can a fight scene, component-wise, be too complex and complicated?

Is TA-ing worth the opportunity cost?

Tikzpicture - finish drawing a curved line for a cake slice

How to create all combinations from a nested list while preserving the structure using R?

Christian apologetics regarding the killing of innocent children during the Genesis flood

How can I iterate this process?

Wherein the Shatapatha Brahmana it was mentioned about 8.64 lakh alphabets in Vedas?

Why doesn't the "ch" pronunciation rule occur for words such as "durch" and "manchmal"?

Is Texas Instrument wrong with their pin number on TO-92 package?



Specific numerical eigenfunctions of Helmholtz equation in 3D for ellipsoids


Numerically solving Helmholtz equation in 3D for arbitrary shapesSolving the Helmholtz equation in polar coordinatesNumerically solving Helmholtz equation in 2D for arbitrary shapesNumerically solving Helmholtz equation in 3D for arbitrary shapesFinite Element Mass and Stiffness MatricesNDEigensystem producing imaginary eigenfrequencies for the vibrations of a cantileverNumerically Solving Helmholtz over the Rectangle - Why does this code only give eigenfunctions of the form $u_m1$failure of code with Helmholtz equation with point sourceComparing analytical solution with numerical solution of Helmholtz equation in a unit squareNDSolve post-processing: Calculate the flow over a FEM-boundaryNumerical methods to solve a continuity equation






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








6












$begingroup$


I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



Here is my code for the first 4 eigenmodes:



Needs["NDSolve`FEM`"];

helmholzSolve3D[g_, numEigenToCompute_Integer,
opts : OptionsPattern[]] :=
Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
numEigen, res, eigenValues, eigenVectors,
evIF,

(*Discretize the region*)

If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
boundaryMesh = ToBoundaryMesh[mesh];

(*Set up the PDE and boundary condition*)

pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
u[t, x, y, z] == 0;
dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
(*Pre-process the equations to obtain the FiniteElementData in
StateData*)nr = ToNumericalRegion[mesh];
state =
NDSolve`ProcessEquations[pde, dirichletCondition,
u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
femdata = state["FiniteElementData"];
initBCs = femdata["BoundaryConditionData"];
methodData = femdata["FEMMethodData"];
initCoeffs = femdata["PDECoefficientData"];

(*Set up the solution*)vd = methodData["VariableData"];

sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];

(*Discretize the PDE and boundary conditions*)

discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

(*Extract the relevant matrices and deploy the boundary conditions*)

load = discretePDE["LoadVector"];
stiffness = discretePDE["StiffnessMatrix"];
damping = discretePDE["DampingMatrix"];
DeployBoundaryConditions[load, stiffness, damping, discreteBCs];

(*Set the number of eigenvalues ignoring the Dirichlet positions*)

pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
nDiri = Length[pos];
numEigen = numEigenToCompute + nDiri;

(*Solve the eigensystem*)

res = Eigensystem[stiffness, damping, -numEigen];
res = Reverse /@ res;
eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;

(*Return the relevant information*)

eigenValues, evIF, mesh]

ev, if, mesh =
helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
MaxCellMeasure -> 0.025]

Table[
DensityPlot[
if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
PlotLabel -> ev[i] ,
ColorFunction -> Hue,
PlotLegends -> Automatic
],
i, 1, 4
]


Any suggestions?










share|improve this question











$endgroup$




















    6












    $begingroup$


    I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



    Here is my code for the first 4 eigenmodes:



    Needs["NDSolve`FEM`"];

    helmholzSolve3D[g_, numEigenToCompute_Integer,
    opts : OptionsPattern[]] :=
    Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
    nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
    discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
    numEigen, res, eigenValues, eigenVectors,
    evIF,

    (*Discretize the region*)

    If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
    mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
    mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
    boundaryMesh = ToBoundaryMesh[mesh];

    (*Set up the PDE and boundary condition*)

    pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
    u[t, x, y, z] == 0;
    dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
    (*Pre-process the equations to obtain the FiniteElementData in
    StateData*)nr = ToNumericalRegion[mesh];
    state =
    NDSolve`ProcessEquations[pde, dirichletCondition,
    u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
    femdata = state["FiniteElementData"];
    initBCs = femdata["BoundaryConditionData"];
    methodData = femdata["FEMMethodData"];
    initCoeffs = femdata["PDECoefficientData"];

    (*Set up the solution*)vd = methodData["VariableData"];

    sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];

    (*Discretize the PDE and boundary conditions*)

    discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
    discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

    (*Extract the relevant matrices and deploy the boundary conditions*)

    load = discretePDE["LoadVector"];
    stiffness = discretePDE["StiffnessMatrix"];
    damping = discretePDE["DampingMatrix"];
    DeployBoundaryConditions[load, stiffness, damping, discreteBCs];

    (*Set the number of eigenvalues ignoring the Dirichlet positions*)

    pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
    nDiri = Length[pos];
    numEigen = numEigenToCompute + nDiri;

    (*Solve the eigensystem*)

    res = Eigensystem[stiffness, damping, -numEigen];
    res = Reverse /@ res;
    eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
    eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
    evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;

    (*Return the relevant information*)

    eigenValues, evIF, mesh]

    ev, if, mesh =
    helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
    MaxCellMeasure -> 0.025]

    Table[
    DensityPlot[
    if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
    RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
    PlotLabel -> ev[i] ,
    ColorFunction -> Hue,
    PlotLegends -> Automatic
    ],
    i, 1, 4
    ]


    Any suggestions?










    share|improve this question











    $endgroup$
















      6












      6








      6





      $begingroup$


      I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



      Here is my code for the first 4 eigenmodes:



      Needs["NDSolve`FEM`"];

      helmholzSolve3D[g_, numEigenToCompute_Integer,
      opts : OptionsPattern[]] :=
      Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
      nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
      discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
      numEigen, res, eigenValues, eigenVectors,
      evIF,

      (*Discretize the region*)

      If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
      mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
      mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
      boundaryMesh = ToBoundaryMesh[mesh];

      (*Set up the PDE and boundary condition*)

      pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
      u[t, x, y, z] == 0;
      dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
      (*Pre-process the equations to obtain the FiniteElementData in
      StateData*)nr = ToNumericalRegion[mesh];
      state =
      NDSolve`ProcessEquations[pde, dirichletCondition,
      u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
      femdata = state["FiniteElementData"];
      initBCs = femdata["BoundaryConditionData"];
      methodData = femdata["FEMMethodData"];
      initCoeffs = femdata["PDECoefficientData"];

      (*Set up the solution*)vd = methodData["VariableData"];

      sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];

      (*Discretize the PDE and boundary conditions*)

      discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
      discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

      (*Extract the relevant matrices and deploy the boundary conditions*)

      load = discretePDE["LoadVector"];
      stiffness = discretePDE["StiffnessMatrix"];
      damping = discretePDE["DampingMatrix"];
      DeployBoundaryConditions[load, stiffness, damping, discreteBCs];

      (*Set the number of eigenvalues ignoring the Dirichlet positions*)

      pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
      nDiri = Length[pos];
      numEigen = numEigenToCompute + nDiri;

      (*Solve the eigensystem*)

      res = Eigensystem[stiffness, damping, -numEigen];
      res = Reverse /@ res;
      eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
      eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
      evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;

      (*Return the relevant information*)

      eigenValues, evIF, mesh]

      ev, if, mesh =
      helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
      MaxCellMeasure -> 0.025]

      Table[
      DensityPlot[
      if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
      RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
      PlotLabel -> ev[i] ,
      ColorFunction -> Hue,
      PlotLegends -> Automatic
      ],
      i, 1, 4
      ]


      Any suggestions?










      share|improve this question











      $endgroup$




      I am trying to compute the eigenfunctions of an oblate spheroid (a=75 cm and b=60 cm) using Mathematica's FEM package and Chris' answer from here. Specifically, I am looking for eigenfrequencies around 433, 893, 913 and 2400 MGHz. Is there any way I could narrow my search besides getting all eigenfrequencies initially and then looking for the desired outcome which is impractical?



      Here is my code for the first 4 eigenmodes:



      Needs["NDSolve`FEM`"];

      helmholzSolve3D[g_, numEigenToCompute_Integer,
      opts : OptionsPattern[]] :=
      Module[u, x, y, z, t, pde, dirichletCondition, mesh, boundaryMesh,
      nr, state, femdata, initBCs, methodData, initCoeffs, vd, sd,
      discretePDE, discreteBCs, load, stiffness, damping, pos, nDiri,
      numEigen, res, eigenValues, eigenVectors,
      evIF,

      (*Discretize the region*)

      If[Head[g] === ImplicitRegion || Head[g] === ParametricRegion,
      mesh = ToElementMesh[DiscretizeRegion[g, opts], opts],
      mesh = ToElementMesh[DiscretizeGraphics[g, opts], opts]];
      boundaryMesh = ToBoundaryMesh[mesh];

      (*Set up the PDE and boundary condition*)

      pde = D[u[t, x, y, z], t] - Laplacian[u[t, x, y, z], x, y, z] +
      u[t, x, y, z] == 0;
      dirichletCondition = DirichletCondition[u[t, x, y, z] == 0, True];
      (*Pre-process the equations to obtain the FiniteElementData in
      StateData*)nr = ToNumericalRegion[mesh];
      state =
      NDSolve`ProcessEquations[pde, dirichletCondition,
      u[0, x, y, z] == 0, u, t, 0, 1, Element[x, y, z, nr]];
      femdata = state["FiniteElementData"];
      initBCs = femdata["BoundaryConditionData"];
      methodData = femdata["FEMMethodData"];
      initCoeffs = femdata["PDECoefficientData"];

      (*Set up the solution*)vd = methodData["VariableData"];

      sd = NDSolve`SolutionData["Space" -> nr, "Time" -> 0.];

      (*Discretize the PDE and boundary conditions*)

      discretePDE = DiscretizePDE[initCoeffs, methodData, sd];
      discreteBCs = DiscretizeBoundaryConditions[initBCs, methodData, sd];

      (*Extract the relevant matrices and deploy the boundary conditions*)

      load = discretePDE["LoadVector"];
      stiffness = discretePDE["StiffnessMatrix"];
      damping = discretePDE["DampingMatrix"];
      DeployBoundaryConditions[load, stiffness, damping, discreteBCs];

      (*Set the number of eigenvalues ignoring the Dirichlet positions*)

      pos = discreteBCs["DirichletMatrix"]["NonzeroPositions"][[All, 2]];
      nDiri = Length[pos];
      numEigen = numEigenToCompute + nDiri;

      (*Solve the eigensystem*)

      res = Eigensystem[stiffness, damping, -numEigen];
      res = Reverse /@ res;
      eigenValues = res[[1, nDiri + 1 ;; Abs[numEigen]]];
      eigenVectors = res[[2, nDiri + 1 ;; Abs[numEigen]]];
      evIF = ElementMeshInterpolation[mesh, #] & /@ eigenVectors;

      (*Return the relevant information*)

      eigenValues, evIF, mesh]

      ev, if, mesh =
      helmholzSolve3D[Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6], 4,
      MaxCellMeasure -> 0.025]

      Table[
      DensityPlot[
      if[[i]][x, y, 0.1], x, -1, 1, y, -1, 1,
      RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
      PlotLabel -> ev[i] ,
      ColorFunction -> Hue,
      PlotLegends -> Automatic
      ],
      i, 1, 4
      ]


      Any suggestions?







      differential-equations numerics finite-element-method






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 29 at 11:18









      user64494

      1




      1










      asked Mar 26 at 22:24







      anon






























          2 Answers
          2






          active

          oldest

          votes


















          9












          $begingroup$

          You could use something like this:



          vals, funs = 
          NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
          DirichletCondition[u[x, y, z] == 0, True], u,
          Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
          Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]

          427.961, 428.783, 430.026, 430.156,...


          And here are the density plots:



          Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1, 
          RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
          PlotLabel -> vals[[i]], ColorFunction -> Hue,
          PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]


          enter image description here



          Slice density plots:



          Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
          Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
          PlotRange -> All, PlotLabel -> vals[[i]],
          PlotTheme -> "Minimal"], i, Length[vals]]


          enter image description here



          And density plots:



          Table[DensityPlot3D[funs[[i]][x, y, z], 
          Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
          PlotRange -> All, PlotLabel -> vals[[i]],
          PlotTheme -> "Minimal"], i, Length[vals]]


          enter image description here






          share|improve this answer











          $endgroup$














          • $begingroup$
            Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
            $endgroup$
            – anon
            Mar 28 at 19:26










          • $begingroup$
            @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
            $endgroup$
            – user21
            Mar 29 at 5:36










          • $begingroup$
            OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
            $endgroup$
            – anon
            Mar 29 at 10:16










          • $begingroup$
            @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
            $endgroup$
            – user21
            Mar 29 at 10:23










          • $begingroup$
            Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
            $endgroup$
            – anon
            Mar 29 at 10:58


















          6












          $begingroup$

          You may try Eigensystem with



          Method -> "FEAST", "Interval" -> a, b


          to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






          share|improve this answer











          $endgroup$

















            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "387"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194006%2fspecific-numerical-eigenfunctions-of-helmholtz-equation-in-3d-for-ellipsoids%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown
























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            9












            $begingroup$

            You could use something like this:



            vals, funs = 
            NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True], u,
            Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
            Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]

            427.961, 428.783, 430.026, 430.156,...


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1, 
            RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here






            share|improve this answer











            $endgroup$














            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – anon
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – anon
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – anon
              Mar 29 at 10:58















            9












            $begingroup$

            You could use something like this:



            vals, funs = 
            NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True], u,
            Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
            Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]

            427.961, 428.783, 430.026, 430.156,...


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1, 
            RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here






            share|improve this answer











            $endgroup$














            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – anon
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – anon
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – anon
              Mar 29 at 10:58













            9












            9








            9





            $begingroup$

            You could use something like this:



            vals, funs = 
            NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True], u,
            Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
            Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]

            427.961, 428.783, 430.026, 430.156,...


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1, 
            RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here






            share|improve this answer











            $endgroup$



            You could use something like this:



            vals, funs = 
            NDEigensystem[-Laplacian[u[x, y, z], x, y, z] + u[x, y, z],
            DirichletCondition[u[x, y, z] == 0, True], u,
            Element[x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]], 4,
            Method -> "Eigensystem" -> "FEAST", "Interval" -> 425, 500]

            427.961, 428.783, 430.026, 430.156,...


            And here are the density plots:



            Table[DensityPlot[funs[[i]][x, y, 0.1], x, -1, 1, y, -1, 1, 
            RegionFunction -> Function[x, y, x^2/0.75^2 + y^2/0.6^2 < 1],
            PlotLabel -> vals[[i]], ColorFunction -> Hue,
            PlotLegends -> Automatic, PlotRange -> All], i, 1, 4]


            enter image description here



            Slice density plots:



            Table[SliceDensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here



            And density plots:



            Table[DensityPlot3D[funs[[i]][x, y, z], 
            Element[ x, y, z, Ellipsoid[0, 0, 0, 0.75, 0.6, 0.6]],
            PlotRange -> All, PlotLabel -> vals[[i]],
            PlotTheme -> "Minimal"], i, Length[vals]]


            enter image description here







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Mar 29 at 12:55

























            answered Mar 27 at 6:31









            user21user21

            23.1k7 gold badges67 silver badges107 bronze badges




            23.1k7 gold badges67 silver badges107 bronze badges














            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – anon
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – anon
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – anon
              Mar 29 at 10:58
















            • $begingroup$
              Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
              $endgroup$
              – anon
              Mar 28 at 19:26










            • $begingroup$
              @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
              $endgroup$
              – user21
              Mar 29 at 5:36










            • $begingroup$
              OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
              $endgroup$
              – anon
              Mar 29 at 10:16










            • $begingroup$
              @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
              $endgroup$
              – user21
              Mar 29 at 10:23










            • $begingroup$
              Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
              $endgroup$
              – anon
              Mar 29 at 10:58















            $begingroup$
            Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
            $endgroup$
            – anon
            Mar 28 at 19:26




            $begingroup$
            Thank you for your answer but I need to clarify something technical here. Does NDEigensystems compute eigenmodes from start, ie 0 and then narrows its search to the desired interval (425, 500 HZ here) or does it start from 425 Hz and then stops at 500 Hz?
            $endgroup$
            – anon
            Mar 28 at 19:26












            $begingroup$
            @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
            $endgroup$
            – user21
            Mar 29 at 5:36




            $begingroup$
            @GeorgeGiannoulis, I think the latter, but you could have a look at the FEAST algorithm.Thought that version is not the same as the one linked in Mathematica but that shlould not matter. NDEigensystem makes use if Eigensystem (like in your code) which then uses FEAST from a library.
            $endgroup$
            – user21
            Mar 29 at 5:36












            $begingroup$
            OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
            $endgroup$
            – anon
            Mar 29 at 10:16




            $begingroup$
            OK one last thing here. I can't seem to understand what the boubdary is in your code. Is it a cube,a sphere, an ellispoid? Something else?
            $endgroup$
            – anon
            Mar 29 at 10:16












            $begingroup$
            @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
            $endgroup$
            – user21
            Mar 29 at 10:23




            $begingroup$
            @GeorgeGiannoulis, it's the ellipsoidI have updated the code.
            $endgroup$
            – user21
            Mar 29 at 10:23












            $begingroup$
            Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
            $endgroup$
            – anon
            Mar 29 at 10:58




            $begingroup$
            Great! I d like to add some density plots though for the eigenvalues. My code looks something like this:
            $endgroup$
            – anon
            Mar 29 at 10:58













            6












            $begingroup$

            You may try Eigensystem with



            Method -> "FEAST", "Interval" -> a, b


            to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






            share|improve this answer











            $endgroup$



















              6












              $begingroup$

              You may try Eigensystem with



              Method -> "FEAST", "Interval" -> a, b


              to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






              share|improve this answer











              $endgroup$

















                6












                6








                6





                $begingroup$

                You may try Eigensystem with



                Method -> "FEAST", "Interval" -> a, b


                to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.






                share|improve this answer











                $endgroup$



                You may try Eigensystem with



                Method -> "FEAST", "Interval" -> a, b


                to search eigenvalue pairs within an interval. See the documentation of Eigensystem, Section "Methods", Subsection "FEAST" for more details.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Mar 27 at 7:23

























                answered Mar 26 at 22:32









                Henrik SchumacherHenrik Schumacher

                67.1k5 gold badges96 silver badges185 bronze badges




                67.1k5 gold badges96 silver badges185 bronze badges






























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194006%2fspecific-numerical-eigenfunctions-of-helmholtz-equation-in-3d-for-ellipsoids%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

                    SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

                    은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현