Exporting a list as a new column in a pandas dataframe as part of a nested for loopAdd one row to pandas DataFrameSelecting multiple columns in a pandas dataframeRenaming columns in pandasAdding new column to existing DataFrame in Python pandasDelete column from pandas DataFrame“Large data” work flows using pandasHow to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandasGet list from pandas DataFrame column headerscombining 2 pandas dataframes
Output Distinct Factor Cuboids
How to give my students a straightedge instead of a ruler
What to do as a player when ranger animal companion dies
Applications of mathematics in clinical setting
Other than good shoes and a stick, what are some ways to preserve your knees on long hikes?
What is the maximum viable speed for a projectile within earth's atmosphere?
Are there any instances in Tanach of Lashon Hara said purely for non-constructive purposes?
Unpredictability of Stock Market
Whence comes increasing usage of "do" for "have" in ordering food?
Can a business put whatever they want into a contract?
Should the pagination be reset when changing the order?
Did slaves have slaves?
How to convey to the people around me that I want to disengage myself from constant giving?
Social Encounters in a West Marches Campaign
How can I check that parent has more than 1 child?
Delete empty subfolders, keep parent folder
What was the deeper meaning of Hermione wanting the cloak?
Minimum number of lines to draw 111 squares
What exactly is a web font, and what does converting to one involve?
Can one guy with a duplicator trigger a nuclear apocalypse?
What's the benefit of prohibiting the use of techniques/language constructs that have not been taught?
Why are there no programmes / playbills for movies?
Could the Orion project pusher plate model be used for asteroid deflection?
Are lay articles good enough to be the main source of information for PhD research?
Exporting a list as a new column in a pandas dataframe as part of a nested for loop
Add one row to pandas DataFrameSelecting multiple columns in a pandas dataframeRenaming columns in pandasAdding new column to existing DataFrame in Python pandasDelete column from pandas DataFrame“Large data” work flows using pandasHow to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandasGet list from pandas DataFrame column headerscombining 2 pandas dataframes
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
I am inputting multiple spreadsheets with multiple columns of data. For each spreadsheet, the maximum value of each column is found. Then, for each element in the column, the element is divided by the maximum value of that column. The output should be a value (between 0 and 1) for each element in the column in ascending order. This is appended to a list which should be added to the source spreadsheet as a column.
Currently, the nested loops are performing correctly apart from the final step, as far as I understand. Each column is added to the spreadsheet EXCEPT the values are for the final column of the source spreadsheet rather than values related to each individual column.
I have tried changing the indents to associate levels of the code with different parts (as I think this is the problem) and tried moving the appended column along in the dataframe, to no avail.
for i in distlist:
#listname = i[4:] + '_norm'
df2 = pd.read_excel(i,header=0,index_col=None, skip_blank_lines=True)
df3 = df2.dropna(axis=0, how='any')
cols = []
for column in df3:
cols.append(column)
for x in cols:
listname = x + ' norm'
maxval = df3[x].max()
print(maxval)
mylist = []
for j in df3[x]:
findNL = (j/maxval)
mylist.append(findNL)
df3[listname] = mylist
saveloc = 'E:/test/'
filename = i[:-18] + '_Normalised.xlsx'
df3.to_excel(saveloc+filename, index=False)
New columns are added to the output dataframe with bespoke headings relating to the field headers in the source spreadsheet and renamed according to (listname). The data in each one of these new columns is identical and relates to the final column in the spreadsheet. To me, it seems to be overwriting the values each time (as if looping through the entire spreadsheet, not outputting for each column), and adding it to the spreadsheet.
Any help would be much appreciated. I think it's something simple, but I haven't managed to work out what...
python-3.x pandas for-loop nested-loops
add a comment
|
I am inputting multiple spreadsheets with multiple columns of data. For each spreadsheet, the maximum value of each column is found. Then, for each element in the column, the element is divided by the maximum value of that column. The output should be a value (between 0 and 1) for each element in the column in ascending order. This is appended to a list which should be added to the source spreadsheet as a column.
Currently, the nested loops are performing correctly apart from the final step, as far as I understand. Each column is added to the spreadsheet EXCEPT the values are for the final column of the source spreadsheet rather than values related to each individual column.
I have tried changing the indents to associate levels of the code with different parts (as I think this is the problem) and tried moving the appended column along in the dataframe, to no avail.
for i in distlist:
#listname = i[4:] + '_norm'
df2 = pd.read_excel(i,header=0,index_col=None, skip_blank_lines=True)
df3 = df2.dropna(axis=0, how='any')
cols = []
for column in df3:
cols.append(column)
for x in cols:
listname = x + ' norm'
maxval = df3[x].max()
print(maxval)
mylist = []
for j in df3[x]:
findNL = (j/maxval)
mylist.append(findNL)
df3[listname] = mylist
saveloc = 'E:/test/'
filename = i[:-18] + '_Normalised.xlsx'
df3.to_excel(saveloc+filename, index=False)
New columns are added to the output dataframe with bespoke headings relating to the field headers in the source spreadsheet and renamed according to (listname). The data in each one of these new columns is identical and relates to the final column in the spreadsheet. To me, it seems to be overwriting the values each time (as if looping through the entire spreadsheet, not outputting for each column), and adding it to the spreadsheet.
Any help would be much appreciated. I think it's something simple, but I haven't managed to work out what...
python-3.x pandas for-loop nested-loops
add a comment
|
I am inputting multiple spreadsheets with multiple columns of data. For each spreadsheet, the maximum value of each column is found. Then, for each element in the column, the element is divided by the maximum value of that column. The output should be a value (between 0 and 1) for each element in the column in ascending order. This is appended to a list which should be added to the source spreadsheet as a column.
Currently, the nested loops are performing correctly apart from the final step, as far as I understand. Each column is added to the spreadsheet EXCEPT the values are for the final column of the source spreadsheet rather than values related to each individual column.
I have tried changing the indents to associate levels of the code with different parts (as I think this is the problem) and tried moving the appended column along in the dataframe, to no avail.
for i in distlist:
#listname = i[4:] + '_norm'
df2 = pd.read_excel(i,header=0,index_col=None, skip_blank_lines=True)
df3 = df2.dropna(axis=0, how='any')
cols = []
for column in df3:
cols.append(column)
for x in cols:
listname = x + ' norm'
maxval = df3[x].max()
print(maxval)
mylist = []
for j in df3[x]:
findNL = (j/maxval)
mylist.append(findNL)
df3[listname] = mylist
saveloc = 'E:/test/'
filename = i[:-18] + '_Normalised.xlsx'
df3.to_excel(saveloc+filename, index=False)
New columns are added to the output dataframe with bespoke headings relating to the field headers in the source spreadsheet and renamed according to (listname). The data in each one of these new columns is identical and relates to the final column in the spreadsheet. To me, it seems to be overwriting the values each time (as if looping through the entire spreadsheet, not outputting for each column), and adding it to the spreadsheet.
Any help would be much appreciated. I think it's something simple, but I haven't managed to work out what...
python-3.x pandas for-loop nested-loops
I am inputting multiple spreadsheets with multiple columns of data. For each spreadsheet, the maximum value of each column is found. Then, for each element in the column, the element is divided by the maximum value of that column. The output should be a value (between 0 and 1) for each element in the column in ascending order. This is appended to a list which should be added to the source spreadsheet as a column.
Currently, the nested loops are performing correctly apart from the final step, as far as I understand. Each column is added to the spreadsheet EXCEPT the values are for the final column of the source spreadsheet rather than values related to each individual column.
I have tried changing the indents to associate levels of the code with different parts (as I think this is the problem) and tried moving the appended column along in the dataframe, to no avail.
for i in distlist:
#listname = i[4:] + '_norm'
df2 = pd.read_excel(i,header=0,index_col=None, skip_blank_lines=True)
df3 = df2.dropna(axis=0, how='any')
cols = []
for column in df3:
cols.append(column)
for x in cols:
listname = x + ' norm'
maxval = df3[x].max()
print(maxval)
mylist = []
for j in df3[x]:
findNL = (j/maxval)
mylist.append(findNL)
df3[listname] = mylist
saveloc = 'E:/test/'
filename = i[:-18] + '_Normalised.xlsx'
df3.to_excel(saveloc+filename, index=False)
New columns are added to the output dataframe with bespoke headings relating to the field headers in the source spreadsheet and renamed according to (listname). The data in each one of these new columns is identical and relates to the final column in the spreadsheet. To me, it seems to be overwriting the values each time (as if looping through the entire spreadsheet, not outputting for each column), and adding it to the spreadsheet.
Any help would be much appreciated. I think it's something simple, but I haven't managed to work out what...
python-3.x pandas for-loop nested-loops
python-3.x pandas for-loop nested-loops
asked Mar 28 at 13:36
GeomorphicJoshGeomorphicJosh
83 bronze badges
83 bronze badges
add a comment
|
add a comment
|
2 Answers
2
active
oldest
votes
If I understand you correctly, you are overcomplicating things. You dont need a for loop for this. You can simplify your code:
# Make example dataframe, this is not provided
df = pd.DataFrame('col1':[1, 2, 3, 4],
'col2':[5, 6, 7, 8])
print(df)
col1 col2
0 1 5
1 2 6
2 3 7
3 4 8
Now we can use DataFrame.apply
and use add_suffix
to give the new columns _norm
suffix and after that concat the columns to one final dataframe
df_conc = pd.concat([df, df.apply(lambda x: x/x.max()).add_suffix('_norm')],axis=1)
print(df_conc)
col1 col2 col1_norm col2_norm
0 1 5 0.25 0.625
1 2 6 0.50 0.750
2 3 7 0.75 0.875
3 4 8 1.00 1.000
add a comment
|
Many thanks. I think I was just overcomplicating it. Incidentally, I think my code may do the same job, but because there is so little difference in the values, it wasn't notable.
Thanks for your help @Erfan
add a comment
|
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55398997%2fexporting-a-list-as-a-new-column-in-a-pandas-dataframe-as-part-of-a-nested-for-l%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
If I understand you correctly, you are overcomplicating things. You dont need a for loop for this. You can simplify your code:
# Make example dataframe, this is not provided
df = pd.DataFrame('col1':[1, 2, 3, 4],
'col2':[5, 6, 7, 8])
print(df)
col1 col2
0 1 5
1 2 6
2 3 7
3 4 8
Now we can use DataFrame.apply
and use add_suffix
to give the new columns _norm
suffix and after that concat the columns to one final dataframe
df_conc = pd.concat([df, df.apply(lambda x: x/x.max()).add_suffix('_norm')],axis=1)
print(df_conc)
col1 col2 col1_norm col2_norm
0 1 5 0.25 0.625
1 2 6 0.50 0.750
2 3 7 0.75 0.875
3 4 8 1.00 1.000
add a comment
|
If I understand you correctly, you are overcomplicating things. You dont need a for loop for this. You can simplify your code:
# Make example dataframe, this is not provided
df = pd.DataFrame('col1':[1, 2, 3, 4],
'col2':[5, 6, 7, 8])
print(df)
col1 col2
0 1 5
1 2 6
2 3 7
3 4 8
Now we can use DataFrame.apply
and use add_suffix
to give the new columns _norm
suffix and after that concat the columns to one final dataframe
df_conc = pd.concat([df, df.apply(lambda x: x/x.max()).add_suffix('_norm')],axis=1)
print(df_conc)
col1 col2 col1_norm col2_norm
0 1 5 0.25 0.625
1 2 6 0.50 0.750
2 3 7 0.75 0.875
3 4 8 1.00 1.000
add a comment
|
If I understand you correctly, you are overcomplicating things. You dont need a for loop for this. You can simplify your code:
# Make example dataframe, this is not provided
df = pd.DataFrame('col1':[1, 2, 3, 4],
'col2':[5, 6, 7, 8])
print(df)
col1 col2
0 1 5
1 2 6
2 3 7
3 4 8
Now we can use DataFrame.apply
and use add_suffix
to give the new columns _norm
suffix and after that concat the columns to one final dataframe
df_conc = pd.concat([df, df.apply(lambda x: x/x.max()).add_suffix('_norm')],axis=1)
print(df_conc)
col1 col2 col1_norm col2_norm
0 1 5 0.25 0.625
1 2 6 0.50 0.750
2 3 7 0.75 0.875
3 4 8 1.00 1.000
If I understand you correctly, you are overcomplicating things. You dont need a for loop for this. You can simplify your code:
# Make example dataframe, this is not provided
df = pd.DataFrame('col1':[1, 2, 3, 4],
'col2':[5, 6, 7, 8])
print(df)
col1 col2
0 1 5
1 2 6
2 3 7
3 4 8
Now we can use DataFrame.apply
and use add_suffix
to give the new columns _norm
suffix and after that concat the columns to one final dataframe
df_conc = pd.concat([df, df.apply(lambda x: x/x.max()).add_suffix('_norm')],axis=1)
print(df_conc)
col1 col2 col1_norm col2_norm
0 1 5 0.25 0.625
1 2 6 0.50 0.750
2 3 7 0.75 0.875
3 4 8 1.00 1.000
answered Mar 28 at 13:46
ErfanErfan
12k2 gold badges8 silver badges28 bronze badges
12k2 gold badges8 silver badges28 bronze badges
add a comment
|
add a comment
|
Many thanks. I think I was just overcomplicating it. Incidentally, I think my code may do the same job, but because there is so little difference in the values, it wasn't notable.
Thanks for your help @Erfan
add a comment
|
Many thanks. I think I was just overcomplicating it. Incidentally, I think my code may do the same job, but because there is so little difference in the values, it wasn't notable.
Thanks for your help @Erfan
add a comment
|
Many thanks. I think I was just overcomplicating it. Incidentally, I think my code may do the same job, but because there is so little difference in the values, it wasn't notable.
Thanks for your help @Erfan
Many thanks. I think I was just overcomplicating it. Incidentally, I think my code may do the same job, but because there is so little difference in the values, it wasn't notable.
Thanks for your help @Erfan
answered Mar 28 at 15:57
GeomorphicJoshGeomorphicJosh
83 bronze badges
83 bronze badges
add a comment
|
add a comment
|
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55398997%2fexporting-a-list-as-a-new-column-in-a-pandas-dataframe-as-part-of-a-nested-for-l%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown