Shortcut for value of $f(1)$ where $f(x) = int e^x left(arctan x + frac 2x(1+x^2)^2right),dx$Shortcut/trick for integrating a factored polynomial?$int sqrtfracxx+1dx$Integrate $ int frac e^arctan(x)(1+x^2)^frac32 dx $Problem with definite integral $int _0^fracpi 2sin left(arctan left(xright)+xright)dx$$int frac2x9x^2+3dx=?$Integrate $int frac11+arctan(x)dx$A shortcut for solving $int fracdx(sin x+cos x)^3$Calculate $int_0^1fraccos(arctan x)sqrtxdx$About the integral $intarctanleft(frac1sinh^2 xright)dx$, some idea or feedbackFind $intarctan x,mathrm dx$ without substitution
More than 3 domains hosted on IP
k times Fold with 3 changing extra variables
Statistical closeness implies computational indistinguishability
Passport - tiny rip on the edge of my passport page
Does the word voltage exist in academic engineering?
What does "先が気になる" mean?
How strong is aircraft-grade spruce?
If every star in the universe except the Sun were destroyed, would we die?
Was Rosie the Riveter sourced from a Michelangelo painting?
Is it right to use the ideas of non-winning designers in a design contest?
After a few interviews, What should I do after told to wait?
Where on Earth is it easiest to survive in the wilderness?
What makes an ending "happy"?
"syntax error near unexpected token" after editing .bashrc
Compiler optimization of bitwise not operation
How do I play this harmonic? (Guitar)
How do English-speaking kids loudly request something?
How to interpret or parse this confusing 'NOT' and 'AND' legal clause
What quests do you need to stop at before you make an enemy of a faction for each faction?
Relationship between speed and cadence?
Is every sentence we write or utter either true or false?
What is the purpose of the rotating plate in front of the lock?
Do aarakocra have arms as well as wings?
Did the US Climate Reference Network Show No New Warming Since 2005 in the US?
Shortcut for value of $f(1)$ where $f(x) = int e^x left(arctan x + frac 2x(1+x^2)^2right),dx$
Shortcut/trick for integrating a factored polynomial?$int sqrtfracxx+1dx$Integrate $ int frac e^arctan(x)(1+x^2)^frac32 dx $Problem with definite integral $int _0^fracpi 2sin left(arctan left(xright)+xright)dx$$int frac2x9x^2+3dx=?$Integrate $int frac11+arctan(x)dx$A shortcut for solving $int fracdx(sin x+cos x)^3$Calculate $int_0^1fraccos(arctan x)sqrtxdx$About the integral $intarctanleft(frac1sinh^2 xright)dx$, some idea or feedbackFind $intarctan x,mathrm dx$ without substitution
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to finding this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
$endgroup$
|
show 6 more comments
$begingroup$
If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to finding this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
$endgroup$
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47
|
show 6 more comments
$begingroup$
If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to finding this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
$endgroup$
If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to finding this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
calculus integration indefinite-integrals
edited Mar 28 at 8:09
YuiTo Cheng
3,2978 gold badges17 silver badges49 bronze badges
3,2978 gold badges17 silver badges49 bronze badges
asked Mar 28 at 2:28
HemaHema
6751 gold badge3 silver badges14 bronze badges
6751 gold badge3 silver badges14 bronze badges
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47
|
show 6 more comments
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47
2
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47
|
show 6 more comments
2 Answers
2
active
oldest
votes
$begingroup$
With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.
$endgroup$
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$
Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$
Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165393%2fshortcut-for-value-of-f1-where-fx-int-ex-left-arctan-x-frac-2x%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.
$endgroup$
add a comment |
$begingroup$
With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.
$endgroup$
add a comment |
$begingroup$
With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.
$endgroup$
With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.
answered Mar 28 at 2:51
Catalin ZaraCatalin Zara
4,0376 silver badges15 bronze badges
4,0376 silver badges15 bronze badges
add a comment |
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$
Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$
Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$
$endgroup$
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$
Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$
Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$
$endgroup$
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$
Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$
Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$
$endgroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$
Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$
Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$
answered Mar 28 at 3:43
Thomas ShelbyThomas Shelby
6,3993 gold badges9 silver badges32 bronze badges
6,3993 gold badges9 silver badges32 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165393%2fshortcut-for-value-of-f1-where-fx-int-ex-left-arctan-x-frac-2x%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47