How to Convert Multi header Excel in Pandas to Simple TableConverting a Pandas GroupBy object to DataFrameHow to drop rows of Pandas DataFrame whose value in certain columns is NaN“Large data” work flows using pandasHow do I get the row count of a Pandas dataframe?How to iterate over rows in a DataFrame in Pandas?Get list from pandas DataFrame column headersHow to deal with SettingWithCopyWarning in Pandas?Convert list of dictionaries to a pandas DataFrameConvert Pandas column containing NaNs to dtype `int`How to pivot a dataframe

infared filters v nd

How do I deal with an unproductive colleague in a small company?

Is it possible to do 50 km distance without any previous training?

Roll the carpet

Paid for article while in US on F-1 visa?

What does it mean to describe someone as a butt steak?

Why is Minecraft giving an OpenGL error?

Intersection point of 2 lines defined by 2 points each

A case of the sniffles

I'm flying to France today and my passport expires in less than 2 months

Do I have a twin with permutated remainders?

Why are electrically insulating heatsinks so rare? Is it just cost?

meaning of に in 本当に?

How to format long polynomial?

Perform and show arithmetic with LuaLaTeX

How old can references or sources in a thesis be?

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

How to determine what difficulty is right for the game?

Is it unprofessional to ask if a job posting on GlassDoor is real?

Watching something be written to a file live with tail

If human space travel is limited by the G force vulnerability, is there a way to counter G forces?

Why is consensus so controversial in Britain?

What does the "remote control" for a QF-4 look like?

Theorems that impeded progress



How to Convert Multi header Excel in Pandas to Simple Table


Converting a Pandas GroupBy object to DataFrameHow to drop rows of Pandas DataFrame whose value in certain columns is NaN“Large data” work flows using pandasHow do I get the row count of a Pandas dataframe?How to iterate over rows in a DataFrame in Pandas?Get list from pandas DataFrame column headersHow to deal with SettingWithCopyWarning in Pandas?Convert list of dictionaries to a pandas DataFrameConvert Pandas column containing NaNs to dtype `int`How to pivot a dataframe






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








0















I have a Excel data in below format



Time A Time B NAME A NAME B NAME C
Type A Type B Type C
Celcius Meters Kgs
2019-03-01 00:00:00 2019-02-28 23:59:55.560 8.0285 410.1051 410.5469
2019-03-01 00:00:10 2019-03-01 00:00:05.776 8.0439 410.1051 410.5938
2019-03-01 00:00:20 2019-03-01 00:00:14.995 8.0439 410.2134 410.6875
2019-03-01 00:00:30 2019-03-01 00:00:25.226 8.0439 410.0781 410.5469
2019-03-01 00:00:40 2019-03-01 00:00:35.444 8.0285 410.0239 410.5312
2019-03-01 00:00:50 2019-03-01 00:00:45.676 8.0439 410.1592 410.609


Which i want to convert as pandas dataframe as below



Time A, Time B, Name , Type , Unit , Value 


I tried below code



import pandas as pd
xl = pd.ExcelFile('testx.xlsm')
df = xl.parse(xl.sheet_names[0])
df1 = df.set_index(['Time A', 'Time B'])
df1.columns = [df1.columns,df1.iloc[0], df1.iloc[1]]
df1 = df1.iloc[2:].reset_index(drop=False)
df1.unstack(level=-1)


I tried below code and getting something better but memory intensive.



xl = pd.ExcelFile('test2.xlsm', )
df = xl.parse(xl.sheet_names[0],index_col=[0,1], header=[0,1,2] )
df1 = df.stack().stack().stack()


expected result is like this



Time A Time B name Type Unit Value
2019-03-01 00:00:00 2019-02-28 23:59:55.560 NAME A Type A Celcius 8.0285
NAME B Type B Meters 410.1051
NAME C Type C Kgs 410.5469









share|improve this question
























  • Are you trying to get a dataframe where the headers for columns 3,4 and 5 have 3 lines each?

    – Jack Fleeting
    Mar 22 at 1:24











  • Yes that's correct.

    – jaiswalm
    Mar 22 at 15:19

















0















I have a Excel data in below format



Time A Time B NAME A NAME B NAME C
Type A Type B Type C
Celcius Meters Kgs
2019-03-01 00:00:00 2019-02-28 23:59:55.560 8.0285 410.1051 410.5469
2019-03-01 00:00:10 2019-03-01 00:00:05.776 8.0439 410.1051 410.5938
2019-03-01 00:00:20 2019-03-01 00:00:14.995 8.0439 410.2134 410.6875
2019-03-01 00:00:30 2019-03-01 00:00:25.226 8.0439 410.0781 410.5469
2019-03-01 00:00:40 2019-03-01 00:00:35.444 8.0285 410.0239 410.5312
2019-03-01 00:00:50 2019-03-01 00:00:45.676 8.0439 410.1592 410.609


Which i want to convert as pandas dataframe as below



Time A, Time B, Name , Type , Unit , Value 


I tried below code



import pandas as pd
xl = pd.ExcelFile('testx.xlsm')
df = xl.parse(xl.sheet_names[0])
df1 = df.set_index(['Time A', 'Time B'])
df1.columns = [df1.columns,df1.iloc[0], df1.iloc[1]]
df1 = df1.iloc[2:].reset_index(drop=False)
df1.unstack(level=-1)


I tried below code and getting something better but memory intensive.



xl = pd.ExcelFile('test2.xlsm', )
df = xl.parse(xl.sheet_names[0],index_col=[0,1], header=[0,1,2] )
df1 = df.stack().stack().stack()


expected result is like this



Time A Time B name Type Unit Value
2019-03-01 00:00:00 2019-02-28 23:59:55.560 NAME A Type A Celcius 8.0285
NAME B Type B Meters 410.1051
NAME C Type C Kgs 410.5469









share|improve this question
























  • Are you trying to get a dataframe where the headers for columns 3,4 and 5 have 3 lines each?

    – Jack Fleeting
    Mar 22 at 1:24











  • Yes that's correct.

    – jaiswalm
    Mar 22 at 15:19













0












0








0








I have a Excel data in below format



Time A Time B NAME A NAME B NAME C
Type A Type B Type C
Celcius Meters Kgs
2019-03-01 00:00:00 2019-02-28 23:59:55.560 8.0285 410.1051 410.5469
2019-03-01 00:00:10 2019-03-01 00:00:05.776 8.0439 410.1051 410.5938
2019-03-01 00:00:20 2019-03-01 00:00:14.995 8.0439 410.2134 410.6875
2019-03-01 00:00:30 2019-03-01 00:00:25.226 8.0439 410.0781 410.5469
2019-03-01 00:00:40 2019-03-01 00:00:35.444 8.0285 410.0239 410.5312
2019-03-01 00:00:50 2019-03-01 00:00:45.676 8.0439 410.1592 410.609


Which i want to convert as pandas dataframe as below



Time A, Time B, Name , Type , Unit , Value 


I tried below code



import pandas as pd
xl = pd.ExcelFile('testx.xlsm')
df = xl.parse(xl.sheet_names[0])
df1 = df.set_index(['Time A', 'Time B'])
df1.columns = [df1.columns,df1.iloc[0], df1.iloc[1]]
df1 = df1.iloc[2:].reset_index(drop=False)
df1.unstack(level=-1)


I tried below code and getting something better but memory intensive.



xl = pd.ExcelFile('test2.xlsm', )
df = xl.parse(xl.sheet_names[0],index_col=[0,1], header=[0,1,2] )
df1 = df.stack().stack().stack()


expected result is like this



Time A Time B name Type Unit Value
2019-03-01 00:00:00 2019-02-28 23:59:55.560 NAME A Type A Celcius 8.0285
NAME B Type B Meters 410.1051
NAME C Type C Kgs 410.5469









share|improve this question
















I have a Excel data in below format



Time A Time B NAME A NAME B NAME C
Type A Type B Type C
Celcius Meters Kgs
2019-03-01 00:00:00 2019-02-28 23:59:55.560 8.0285 410.1051 410.5469
2019-03-01 00:00:10 2019-03-01 00:00:05.776 8.0439 410.1051 410.5938
2019-03-01 00:00:20 2019-03-01 00:00:14.995 8.0439 410.2134 410.6875
2019-03-01 00:00:30 2019-03-01 00:00:25.226 8.0439 410.0781 410.5469
2019-03-01 00:00:40 2019-03-01 00:00:35.444 8.0285 410.0239 410.5312
2019-03-01 00:00:50 2019-03-01 00:00:45.676 8.0439 410.1592 410.609


Which i want to convert as pandas dataframe as below



Time A, Time B, Name , Type , Unit , Value 


I tried below code



import pandas as pd
xl = pd.ExcelFile('testx.xlsm')
df = xl.parse(xl.sheet_names[0])
df1 = df.set_index(['Time A', 'Time B'])
df1.columns = [df1.columns,df1.iloc[0], df1.iloc[1]]
df1 = df1.iloc[2:].reset_index(drop=False)
df1.unstack(level=-1)


I tried below code and getting something better but memory intensive.



xl = pd.ExcelFile('test2.xlsm', )
df = xl.parse(xl.sheet_names[0],index_col=[0,1], header=[0,1,2] )
df1 = df.stack().stack().stack()


expected result is like this



Time A Time B name Type Unit Value
2019-03-01 00:00:00 2019-02-28 23:59:55.560 NAME A Type A Celcius 8.0285
NAME B Type B Meters 410.1051
NAME C Type C Kgs 410.5469






python pandas dataframe






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Mar 26 at 16:38







jaiswalm

















asked Mar 21 at 22:51









jaiswalmjaiswalm

164




164












  • Are you trying to get a dataframe where the headers for columns 3,4 and 5 have 3 lines each?

    – Jack Fleeting
    Mar 22 at 1:24











  • Yes that's correct.

    – jaiswalm
    Mar 22 at 15:19

















  • Are you trying to get a dataframe where the headers for columns 3,4 and 5 have 3 lines each?

    – Jack Fleeting
    Mar 22 at 1:24











  • Yes that's correct.

    – jaiswalm
    Mar 22 at 15:19
















Are you trying to get a dataframe where the headers for columns 3,4 and 5 have 3 lines each?

– Jack Fleeting
Mar 22 at 1:24





Are you trying to get a dataframe where the headers for columns 3,4 and 5 have 3 lines each?

– Jack Fleeting
Mar 22 at 1:24













Yes that's correct.

– jaiswalm
Mar 22 at 15:19





Yes that's correct.

– jaiswalm
Mar 22 at 15:19












2 Answers
2






active

oldest

votes


















0














I think this should get you there:



import pandas as pd

arrays = [['Time A', 'Time B', 'NAME A ', 'NAME B','NAME C'], ['', '', 'Type A','Type B','Type C'], ['', '', 'Celcius','Meters','Kgs']]

df.columns = pd.MultiIndex.from_arrays(arrays)
df


Asssuming your current dataframe already has the Excel data (without the headers), your output should be:



 Time A Time B NAME A NAME B NAME C
Type A Type B Type C
Celcius Meters Kgs
0 2019-03-0100:00:00 2019-02-2823:59:55.560 8.0285 410.1051 410.5469





share|improve this answer























  • format you are showing is Excel Source format. I wanted data in below format convert as pandas dataframe as below. That means fro each date time there will be three values fro three headers. Time A, Time B, Name , Type , Unit , Value

    – jaiswalm
    Mar 22 at 20:40







  • 1





    Sorry, I don't understand what you're looking for. Maybe you should edit your question to include a sample output.

    – Jack Fleeting
    Mar 22 at 20:46











  • Added Example in the original post.

    – jaiswalm
    Mar 22 at 21:10


















0














Another efficient solution found is



# Generate Data Frame
def load_file_in_df(fileName, filePath):
logging.info("Loading file : "+fileName)

if os.path.isfile(filePath +fileName):
obj_xl = pd.ExcelFile(filePath + fileName )
df_excel = obj_xl.parse(obj_xl.sheet_names[0],index_col=[0,1], header=[0,1,2] )
else:
print("File does not exists: " +filePath + fileName)
return df_excel

# Parse Dataframe
def parse_10sec_df(df_excel):
rows, cols = df_excel.shape
l_excel = []
for row in df_excel.itertuples():
for i in range(cols):
l = []
l.append (row[0][0])
l.append (row[0][1] )

l.append (df_excel.columns.values[i][0])
l.append (df_excel.columns.values[i][1])
l.append (df_excel.columns.values[i][2])
l.append (row[i+1] )
l_excel.append(tuple(l))
#print row[i]
return l_excel

Above will produce a tuple with below data.

Time A Time B name Type Unit Value
2019-03-01 00:00:00 2019-02-28 23:59:55.560 NAME A Type A Celcius 8.0285
NAME B Type B Meters 410.1051
NAME C Type C Kgs 410.5469





share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function ()
    StackExchange.using("externalEditor", function ()
    StackExchange.using("snippets", function ()
    StackExchange.snippets.init();
    );
    );
    , "code-snippets");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "1"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55290407%2fhow-to-convert-multi-header-excel-in-pandas-to-simple-table%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    I think this should get you there:



    import pandas as pd

    arrays = [['Time A', 'Time B', 'NAME A ', 'NAME B','NAME C'], ['', '', 'Type A','Type B','Type C'], ['', '', 'Celcius','Meters','Kgs']]

    df.columns = pd.MultiIndex.from_arrays(arrays)
    df


    Asssuming your current dataframe already has the Excel data (without the headers), your output should be:



     Time A Time B NAME A NAME B NAME C
    Type A Type B Type C
    Celcius Meters Kgs
    0 2019-03-0100:00:00 2019-02-2823:59:55.560 8.0285 410.1051 410.5469





    share|improve this answer























    • format you are showing is Excel Source format. I wanted data in below format convert as pandas dataframe as below. That means fro each date time there will be three values fro three headers. Time A, Time B, Name , Type , Unit , Value

      – jaiswalm
      Mar 22 at 20:40







    • 1





      Sorry, I don't understand what you're looking for. Maybe you should edit your question to include a sample output.

      – Jack Fleeting
      Mar 22 at 20:46











    • Added Example in the original post.

      – jaiswalm
      Mar 22 at 21:10















    0














    I think this should get you there:



    import pandas as pd

    arrays = [['Time A', 'Time B', 'NAME A ', 'NAME B','NAME C'], ['', '', 'Type A','Type B','Type C'], ['', '', 'Celcius','Meters','Kgs']]

    df.columns = pd.MultiIndex.from_arrays(arrays)
    df


    Asssuming your current dataframe already has the Excel data (without the headers), your output should be:



     Time A Time B NAME A NAME B NAME C
    Type A Type B Type C
    Celcius Meters Kgs
    0 2019-03-0100:00:00 2019-02-2823:59:55.560 8.0285 410.1051 410.5469





    share|improve this answer























    • format you are showing is Excel Source format. I wanted data in below format convert as pandas dataframe as below. That means fro each date time there will be three values fro three headers. Time A, Time B, Name , Type , Unit , Value

      – jaiswalm
      Mar 22 at 20:40







    • 1





      Sorry, I don't understand what you're looking for. Maybe you should edit your question to include a sample output.

      – Jack Fleeting
      Mar 22 at 20:46











    • Added Example in the original post.

      – jaiswalm
      Mar 22 at 21:10













    0












    0








    0







    I think this should get you there:



    import pandas as pd

    arrays = [['Time A', 'Time B', 'NAME A ', 'NAME B','NAME C'], ['', '', 'Type A','Type B','Type C'], ['', '', 'Celcius','Meters','Kgs']]

    df.columns = pd.MultiIndex.from_arrays(arrays)
    df


    Asssuming your current dataframe already has the Excel data (without the headers), your output should be:



     Time A Time B NAME A NAME B NAME C
    Type A Type B Type C
    Celcius Meters Kgs
    0 2019-03-0100:00:00 2019-02-2823:59:55.560 8.0285 410.1051 410.5469





    share|improve this answer













    I think this should get you there:



    import pandas as pd

    arrays = [['Time A', 'Time B', 'NAME A ', 'NAME B','NAME C'], ['', '', 'Type A','Type B','Type C'], ['', '', 'Celcius','Meters','Kgs']]

    df.columns = pd.MultiIndex.from_arrays(arrays)
    df


    Asssuming your current dataframe already has the Excel data (without the headers), your output should be:



     Time A Time B NAME A NAME B NAME C
    Type A Type B Type C
    Celcius Meters Kgs
    0 2019-03-0100:00:00 2019-02-2823:59:55.560 8.0285 410.1051 410.5469






    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered Mar 22 at 17:57









    Jack FleetingJack Fleeting

    636314




    636314












    • format you are showing is Excel Source format. I wanted data in below format convert as pandas dataframe as below. That means fro each date time there will be three values fro three headers. Time A, Time B, Name , Type , Unit , Value

      – jaiswalm
      Mar 22 at 20:40







    • 1





      Sorry, I don't understand what you're looking for. Maybe you should edit your question to include a sample output.

      – Jack Fleeting
      Mar 22 at 20:46











    • Added Example in the original post.

      – jaiswalm
      Mar 22 at 21:10

















    • format you are showing is Excel Source format. I wanted data in below format convert as pandas dataframe as below. That means fro each date time there will be three values fro three headers. Time A, Time B, Name , Type , Unit , Value

      – jaiswalm
      Mar 22 at 20:40







    • 1





      Sorry, I don't understand what you're looking for. Maybe you should edit your question to include a sample output.

      – Jack Fleeting
      Mar 22 at 20:46











    • Added Example in the original post.

      – jaiswalm
      Mar 22 at 21:10
















    format you are showing is Excel Source format. I wanted data in below format convert as pandas dataframe as below. That means fro each date time there will be three values fro three headers. Time A, Time B, Name , Type , Unit , Value

    – jaiswalm
    Mar 22 at 20:40






    format you are showing is Excel Source format. I wanted data in below format convert as pandas dataframe as below. That means fro each date time there will be three values fro three headers. Time A, Time B, Name , Type , Unit , Value

    – jaiswalm
    Mar 22 at 20:40





    1




    1





    Sorry, I don't understand what you're looking for. Maybe you should edit your question to include a sample output.

    – Jack Fleeting
    Mar 22 at 20:46





    Sorry, I don't understand what you're looking for. Maybe you should edit your question to include a sample output.

    – Jack Fleeting
    Mar 22 at 20:46













    Added Example in the original post.

    – jaiswalm
    Mar 22 at 21:10





    Added Example in the original post.

    – jaiswalm
    Mar 22 at 21:10













    0














    Another efficient solution found is



    # Generate Data Frame
    def load_file_in_df(fileName, filePath):
    logging.info("Loading file : "+fileName)

    if os.path.isfile(filePath +fileName):
    obj_xl = pd.ExcelFile(filePath + fileName )
    df_excel = obj_xl.parse(obj_xl.sheet_names[0],index_col=[0,1], header=[0,1,2] )
    else:
    print("File does not exists: " +filePath + fileName)
    return df_excel

    # Parse Dataframe
    def parse_10sec_df(df_excel):
    rows, cols = df_excel.shape
    l_excel = []
    for row in df_excel.itertuples():
    for i in range(cols):
    l = []
    l.append (row[0][0])
    l.append (row[0][1] )

    l.append (df_excel.columns.values[i][0])
    l.append (df_excel.columns.values[i][1])
    l.append (df_excel.columns.values[i][2])
    l.append (row[i+1] )
    l_excel.append(tuple(l))
    #print row[i]
    return l_excel

    Above will produce a tuple with below data.

    Time A Time B name Type Unit Value
    2019-03-01 00:00:00 2019-02-28 23:59:55.560 NAME A Type A Celcius 8.0285
    NAME B Type B Meters 410.1051
    NAME C Type C Kgs 410.5469





    share|improve this answer



























      0














      Another efficient solution found is



      # Generate Data Frame
      def load_file_in_df(fileName, filePath):
      logging.info("Loading file : "+fileName)

      if os.path.isfile(filePath +fileName):
      obj_xl = pd.ExcelFile(filePath + fileName )
      df_excel = obj_xl.parse(obj_xl.sheet_names[0],index_col=[0,1], header=[0,1,2] )
      else:
      print("File does not exists: " +filePath + fileName)
      return df_excel

      # Parse Dataframe
      def parse_10sec_df(df_excel):
      rows, cols = df_excel.shape
      l_excel = []
      for row in df_excel.itertuples():
      for i in range(cols):
      l = []
      l.append (row[0][0])
      l.append (row[0][1] )

      l.append (df_excel.columns.values[i][0])
      l.append (df_excel.columns.values[i][1])
      l.append (df_excel.columns.values[i][2])
      l.append (row[i+1] )
      l_excel.append(tuple(l))
      #print row[i]
      return l_excel

      Above will produce a tuple with below data.

      Time A Time B name Type Unit Value
      2019-03-01 00:00:00 2019-02-28 23:59:55.560 NAME A Type A Celcius 8.0285
      NAME B Type B Meters 410.1051
      NAME C Type C Kgs 410.5469





      share|improve this answer

























        0












        0








        0







        Another efficient solution found is



        # Generate Data Frame
        def load_file_in_df(fileName, filePath):
        logging.info("Loading file : "+fileName)

        if os.path.isfile(filePath +fileName):
        obj_xl = pd.ExcelFile(filePath + fileName )
        df_excel = obj_xl.parse(obj_xl.sheet_names[0],index_col=[0,1], header=[0,1,2] )
        else:
        print("File does not exists: " +filePath + fileName)
        return df_excel

        # Parse Dataframe
        def parse_10sec_df(df_excel):
        rows, cols = df_excel.shape
        l_excel = []
        for row in df_excel.itertuples():
        for i in range(cols):
        l = []
        l.append (row[0][0])
        l.append (row[0][1] )

        l.append (df_excel.columns.values[i][0])
        l.append (df_excel.columns.values[i][1])
        l.append (df_excel.columns.values[i][2])
        l.append (row[i+1] )
        l_excel.append(tuple(l))
        #print row[i]
        return l_excel

        Above will produce a tuple with below data.

        Time A Time B name Type Unit Value
        2019-03-01 00:00:00 2019-02-28 23:59:55.560 NAME A Type A Celcius 8.0285
        NAME B Type B Meters 410.1051
        NAME C Type C Kgs 410.5469





        share|improve this answer













        Another efficient solution found is



        # Generate Data Frame
        def load_file_in_df(fileName, filePath):
        logging.info("Loading file : "+fileName)

        if os.path.isfile(filePath +fileName):
        obj_xl = pd.ExcelFile(filePath + fileName )
        df_excel = obj_xl.parse(obj_xl.sheet_names[0],index_col=[0,1], header=[0,1,2] )
        else:
        print("File does not exists: " +filePath + fileName)
        return df_excel

        # Parse Dataframe
        def parse_10sec_df(df_excel):
        rows, cols = df_excel.shape
        l_excel = []
        for row in df_excel.itertuples():
        for i in range(cols):
        l = []
        l.append (row[0][0])
        l.append (row[0][1] )

        l.append (df_excel.columns.values[i][0])
        l.append (df_excel.columns.values[i][1])
        l.append (df_excel.columns.values[i][2])
        l.append (row[i+1] )
        l_excel.append(tuple(l))
        #print row[i]
        return l_excel

        Above will produce a tuple with below data.

        Time A Time B name Type Unit Value
        2019-03-01 00:00:00 2019-02-28 23:59:55.560 NAME A Type A Celcius 8.0285
        NAME B Type B Meters 410.1051
        NAME C Type C Kgs 410.5469






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Mar 26 at 15:45









        jaiswalmjaiswalm

        164




        164



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55290407%2fhow-to-convert-multi-header-excel-in-pandas-to-simple-table%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

            SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

            은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현