If the string of L consists of 0's only prove that L* is regular Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Data science time! April 2019 and salary with experience The Ask Question Wizard is Live!Regular expression to match string of 0's and 1's without '011' substringProving a Language to be regularWhat regular language intersects with 1*0* gives 1n0nUsing Closure Properties to prove RegularityProving Regular LanguagesProving that a language is regularDesign a regular expression or Finite Automata for a language that consists of 01 or 010?Prove that a context-free-grammar is regularRegular languages and pumping lemma1 or 2 right hand side variable in Context free language

How can I wire a 9-position switch so that each position turns on one more LED than the one before?

Where/What are Arya's scars from?

"Working on a knee"

Writing a T-SQL stored procedure to receive 4 numbers and insert them into a table

Why aren't road bicycle wheels tiny?

What does the black goddess statue do and what is it?

What is /etc/mtab in Linux?

Co-worker works way more than he should

Why did Europeans not widely domesticate foxes?

What do you call an IPA symbol that lacks a name (e.g. ɲ)?

How did Elite on the NES work?

Is there an efficient way for synchronising audio events real-time with LEDs using an MCU?

Why doesn't the university give past final exams' answers?

What's parked in Mil Moscow helicopter plant?

Bright yellow or light yellow?

Philosophers who were composers?

Is Bran literally the world's memory?

Why do people think Winterfell crypts is the safest place for women, children & old people?

Is it accepted to use working hours to read general interest books?

France's Public Holidays' Puzzle

TV series episode where humans nuke aliens before decrypting their message that states they come in peace

Where can I find how to tex symbols for different fonts?

Is a self contained air-bullet cartridge feasible?

All ASCII characters with a given bit count



If the string of L consists of 0's only prove that L* is regular



Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar Manara
Data science time! April 2019 and salary with experience
The Ask Question Wizard is Live!Regular expression to match string of 0's and 1's without '011' substringProving a Language to be regularWhat regular language intersects with 1*0* gives 1n0nUsing Closure Properties to prove RegularityProving Regular LanguagesProving that a language is regularDesign a regular expression or Finite Automata for a language that consists of 01 or 010?Prove that a context-free-grammar is regularRegular languages and pumping lemma1 or 2 right hand side variable in Context free language



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








1















A question 4.2.10 from Introduction to Automata Theory by Hopcroft and Ullman. The original language L can also be non-regular.



Let's say we got a function of 0^(2^n+5), n>=0, how would you prove that (0^(2^n+5))* is regular? And also for the more general case, when f(0) can be any function?










share|improve this question




























    1















    A question 4.2.10 from Introduction to Automata Theory by Hopcroft and Ullman. The original language L can also be non-regular.



    Let's say we got a function of 0^(2^n+5), n>=0, how would you prove that (0^(2^n+5))* is regular? And also for the more general case, when f(0) can be any function?










    share|improve this question
























      1












      1








      1


      1






      A question 4.2.10 from Introduction to Automata Theory by Hopcroft and Ullman. The original language L can also be non-regular.



      Let's say we got a function of 0^(2^n+5), n>=0, how would you prove that (0^(2^n+5))* is regular? And also for the more general case, when f(0) can be any function?










      share|improve this question














      A question 4.2.10 from Introduction to Automata Theory by Hopcroft and Ullman. The original language L can also be non-regular.



      Let's say we got a function of 0^(2^n+5), n>=0, how would you prove that (0^(2^n+5))* is regular? And also for the more general case, when f(0) can be any function?







      regular-language automata






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Mar 22 at 13:42









      VladimirVladimir

      83




      83






















          1 Answer
          1






          active

          oldest

          votes


















          0














          Suppose that L contains two strings 0^n and 0^m and that n and m share no common factors: they are relatively prime. Then, by concatenating some number of instances of 0^n with some number of instances of 0^m, any string of length (n - 1)(m - 1) can be formed. Since L* must therefore exclude only a finite number of words, the complement (L*)' must be finite, hence regular; because regular languages are closed under complement, L* must be regular too.



          Where did (n - 1)(m - 1) come from? Well, it's a special case (n = 2) of the coin problem for which we have a closed-form solution. You should be able to research this and find some proofs.



          What about the case where all strings in L have lengths divisible by some GCD, say g? Well, the proof of regularity is quite similar; consider a modified alphabet where 0 is replaced by the symbol (0^g) and then prove the analogous language over this alphabet is regular as above. In other words, you can show that L* contains only strings divisible by g and all strings divisible by g of length at least (n/g - 1)(m/g - 1) where n and m have GCD g. The language is regular because it excludes only finitely many words whose lengths are divisible by g.






          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function ()
            StackExchange.using("externalEditor", function ()
            StackExchange.using("snippets", function ()
            StackExchange.snippets.init();
            );
            );
            , "code-snippets");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "1"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55300950%2fif-the-string-of-l-consists-of-0s-only-prove-that-l-is-regular%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            Suppose that L contains two strings 0^n and 0^m and that n and m share no common factors: they are relatively prime. Then, by concatenating some number of instances of 0^n with some number of instances of 0^m, any string of length (n - 1)(m - 1) can be formed. Since L* must therefore exclude only a finite number of words, the complement (L*)' must be finite, hence regular; because regular languages are closed under complement, L* must be regular too.



            Where did (n - 1)(m - 1) come from? Well, it's a special case (n = 2) of the coin problem for which we have a closed-form solution. You should be able to research this and find some proofs.



            What about the case where all strings in L have lengths divisible by some GCD, say g? Well, the proof of regularity is quite similar; consider a modified alphabet where 0 is replaced by the symbol (0^g) and then prove the analogous language over this alphabet is regular as above. In other words, you can show that L* contains only strings divisible by g and all strings divisible by g of length at least (n/g - 1)(m/g - 1) where n and m have GCD g. The language is regular because it excludes only finitely many words whose lengths are divisible by g.






            share|improve this answer



























              0














              Suppose that L contains two strings 0^n and 0^m and that n and m share no common factors: they are relatively prime. Then, by concatenating some number of instances of 0^n with some number of instances of 0^m, any string of length (n - 1)(m - 1) can be formed. Since L* must therefore exclude only a finite number of words, the complement (L*)' must be finite, hence regular; because regular languages are closed under complement, L* must be regular too.



              Where did (n - 1)(m - 1) come from? Well, it's a special case (n = 2) of the coin problem for which we have a closed-form solution. You should be able to research this and find some proofs.



              What about the case where all strings in L have lengths divisible by some GCD, say g? Well, the proof of regularity is quite similar; consider a modified alphabet where 0 is replaced by the symbol (0^g) and then prove the analogous language over this alphabet is regular as above. In other words, you can show that L* contains only strings divisible by g and all strings divisible by g of length at least (n/g - 1)(m/g - 1) where n and m have GCD g. The language is regular because it excludes only finitely many words whose lengths are divisible by g.






              share|improve this answer

























                0












                0








                0







                Suppose that L contains two strings 0^n and 0^m and that n and m share no common factors: they are relatively prime. Then, by concatenating some number of instances of 0^n with some number of instances of 0^m, any string of length (n - 1)(m - 1) can be formed. Since L* must therefore exclude only a finite number of words, the complement (L*)' must be finite, hence regular; because regular languages are closed under complement, L* must be regular too.



                Where did (n - 1)(m - 1) come from? Well, it's a special case (n = 2) of the coin problem for which we have a closed-form solution. You should be able to research this and find some proofs.



                What about the case where all strings in L have lengths divisible by some GCD, say g? Well, the proof of regularity is quite similar; consider a modified alphabet where 0 is replaced by the symbol (0^g) and then prove the analogous language over this alphabet is regular as above. In other words, you can show that L* contains only strings divisible by g and all strings divisible by g of length at least (n/g - 1)(m/g - 1) where n and m have GCD g. The language is regular because it excludes only finitely many words whose lengths are divisible by g.






                share|improve this answer













                Suppose that L contains two strings 0^n and 0^m and that n and m share no common factors: they are relatively prime. Then, by concatenating some number of instances of 0^n with some number of instances of 0^m, any string of length (n - 1)(m - 1) can be formed. Since L* must therefore exclude only a finite number of words, the complement (L*)' must be finite, hence regular; because regular languages are closed under complement, L* must be regular too.



                Where did (n - 1)(m - 1) come from? Well, it's a special case (n = 2) of the coin problem for which we have a closed-form solution. You should be able to research this and find some proofs.



                What about the case where all strings in L have lengths divisible by some GCD, say g? Well, the proof of regularity is quite similar; consider a modified alphabet where 0 is replaced by the symbol (0^g) and then prove the analogous language over this alphabet is regular as above. In other words, you can show that L* contains only strings divisible by g and all strings divisible by g of length at least (n/g - 1)(m/g - 1) where n and m have GCD g. The language is regular because it excludes only finitely many words whose lengths are divisible by g.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Mar 22 at 14:51









                Patrick87Patrick87

                18.8k32760




                18.8k32760





























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55300950%2fif-the-string-of-l-consists-of-0s-only-prove-that-l-is-regular%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

                    SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

                    은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현