Error from invalid index/value in pyomo, any tips?How do I remove an element from a list by index in Python?Select rows from a DataFrame based on values in a column in pandasPyomo cannot iterate over abstract Set and constraint index errorError when setting SCIP as solver with PYOMOSymPy fails to parse pyomo expression containing multi index variable referencesCannot iterate over abstract Set before it has been constructed (initialized)Pyomo KeyError: “Error accessing indexed component: Index '0' is not valid for array component 'li_f_inv'”Pyomo - “ERROR: Unexpected exception while running model: ”('B',)“ is not in list ”Pyomo KeyError: “Error accessing indexed component: Index '('student_5', 'company_3', 'meetingtime_1')' is not valid for array component 'var_X'”Load pyomo solution when optimizer returns an error
Has a commercial or military jet bi-plane ever been manufactured?
Are there any Final Fantasy Spirits in Super Smash Bros Ultimate?
I'm in your subnets, golfing your code
Prove that the limit exists or does not exist
String won't reverse using reverse_copy
What are the advantages of luxury car brands like Acura/Lexus over their sibling non-luxury brands Honda/Toyota?
Would Hubble Space Telescope improve black hole image observed by EHT if it joined array of telesopes?
What is the most remote airport from the center of the city it supposedly serves?
Which module had more 'comfort' in terms of living space, the Lunar Module or the Command module?
What does a spell range of "25 ft. + 5 ft./2 levels" mean?
As matter approaches a black hole, does it speed up?
Would the Disguise Self spell be able to reveal hidden birthmarks/tattoos (of the person they're disguised as) to a character?
Should I mention being denied entry to UK due to a confusion in my Visa and Ticket bookings?
In Avengers 1, why does Thanos need Loki?
What is the difference between 'unconcealed' and 'revealed'?
How long would it take for people to notice a mass disappearance?
What is the name of this hexagon/pentagon polyhedron?
What was the first instance of a "planet eater" in sci-fi?
Can an isometry leave entropy invariant?
Manager is threatening to grade me poorly if I don't complete the project
Can a nothic's Weird Insight action discover secrets about a player character that the character doesn't know about themselves?
Did we get closer to another plane than we were supposed to, or was the pilot just protecting our delicate sensibilities?
Purpose of のは in this sentence?
Does a card have a keyword if it has the same effect as said keyword?
Error from invalid index/value in pyomo, any tips?
How do I remove an element from a list by index in Python?Select rows from a DataFrame based on values in a column in pandasPyomo cannot iterate over abstract Set and constraint index errorError when setting SCIP as solver with PYOMOSymPy fails to parse pyomo expression containing multi index variable referencesCannot iterate over abstract Set before it has been constructed (initialized)Pyomo KeyError: “Error accessing indexed component: Index '0' is not valid for array component 'li_f_inv'”Pyomo - “ERROR: Unexpected exception while running model: ”('B',)“ is not in list ”Pyomo KeyError: “Error accessing indexed component: Index '('student_5', 'company_3', 'meetingtime_1')' is not valid for array component 'var_X'”Load pyomo solution when optimizer returns an error
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;
So I'm trying to find an optimal solution to a problem. I tried to copy the format here: https://pyomo.readthedocs.io/en/latest/pyomo_overview/simple_examples.html
I made a .dat file and a model.py file but got a strange indexing error, tried to adjust my .dat file, got similar error. I'm not sure what to do to fix my .dat file and resolve the error.
.py file:
import numpy as np
import pandas as pd
import pyomo.environ as pyo
# probability model
# model parameters
model = pyo.AbstractModel()
model.k = pyo.Param(within=pyo.NonNegativeIntegers)
model.L = pyo.Param(within=pyo.NonNegativeReals)
model.J = pyo.RangeSet(1, model.k)
model.mean = pyo.Param(model.J)
model.var = pyo.Param(model.J)
# decision variable
model.n = pyo.Var(model.J, domain=pyo.NonNegativeIntegers)
# objective function
def objective(model):
return sum(model.n[j]*model.n[j]*model.var[j] for j in model.J)/(sum(model.n[j] for j in model.J)**2)
+ sum(model.n[j] for j in model.J)
model.Obj = pyo.Objective(rule=objective)
def constraint(model):
return (sum(model.n[j]*model.mean[j] for j in model.J)/sum(model.n[j] for j in model.J) >= model.L)
model.Const = pyo.Constraint(rule=constraint)
initial .dat file:
param k := 9 ;
param L := 0 ;
param mean := 0.9581711079943904 0.8838415730337069 0.8984853752157478 0.8986654447608105 0.8663875972671153 0.8211460863742999 0.7847600783146949 0.7788767153059641 0.7484350221893459 0.6894005956320362 ;
param var := 0.18608283075010482 0.3505045997323567 0.3302027274449947 0.3346348960541469 0.3985411187856784 0.47583289045335103 0.5711695307985707 0.595920918431739 0.639842447473589 0.7188389471803242 ;
first error:
[ 0.00] Setting up Pyomo environment
[ 0.00] Applying Pyomo preprocessing actions
[ 0.20] Creating model
ERROR: Constructing component 'mean' from data=0.9581711079943904:
0.8838415730337069, 0.8984853752157478: 0.8986654447608105,
0.8663875972671153: 0.8211460863742999, 0.7847600783146949:
0.7788767153059641, 0.7484350221893459: 0.6894005956320362 failed:
RuntimeError: Failed to set value for param=mean,
index=0.9581711079943904, value=0.8838415730337069.
source error message="Index '0.9581711079943904' is not valid for indexed
component 'mean'"
[ 0.20] Pyomo Finished
ERROR: Unexpected exception while running model:
Failed to set value for param=mean, index=0.9581711079943904,
value=0.8838415730337069.
source error message="Index '0.9581711079943904' is not valid for indexed
component 'mean'"
I thought it might be that I need to put the index before the value in my .dat file since the error listed consecutive values with the first as the index, so I changed my .dat file.
adjusted .dat file:
param k := 9 ;
param L := 0 ;
param mean := 0 0.9581711079943904 1 0.8838415730337069 2 0.8984853752157478 3 0.8986654447608105 4 0.8663875972671153 5 0.8211460863742999 6 0.7847600783146949 7 0.7788767153059641 8 0.7484350221893459 9 0.6894005956320362 ;
param var := 0 0.18608283075010482 1 0.3505045997323567 2 0.3302027274449947 3 0.3346348960541469 4 0.3985411187856784 5 0.47583289045335103 6 0.5711695307985707 7 0.595920918431739 8 0.639842447473589 9 0.7188389471803242 ;
second error:
[ 0.00] Setting up Pyomo environment
[ 0.00] Applying Pyomo preprocessing actions
[ 0.20] Creating model
ERROR: Constructing component 'mean' from data=0: 0.9581711079943904, 1:
0.8838415730337069, 2: 0.8984853752157478, 3: 0.8986654447608105, 4:
0.8663875972671153, 5: 0.8211460863742999, 6: 0.7847600783146949, 7:
0.7788767153059641, 8: 0.7484350221893459, 9: 0.6894005956320362 failed:
RuntimeError: Failed to set value for param=mean, index=0,
value=0.9581711079943904.
source error message="Index '0' is not valid for indexed component
'mean'"
[ 0.20] Pyomo Finished
ERROR: Unexpected exception while running model:
Failed to set value for param=mean, index=0, value=0.9581711079943904.
source error message="Index '0' is not valid for indexed component
'mean'"
Here it says 0 is not valid for indexed component. I'm not sure what to do since I just tired to copy the stuff on the link posted above. Does anybody know this error?
python pyomo ampl
add a comment |
So I'm trying to find an optimal solution to a problem. I tried to copy the format here: https://pyomo.readthedocs.io/en/latest/pyomo_overview/simple_examples.html
I made a .dat file and a model.py file but got a strange indexing error, tried to adjust my .dat file, got similar error. I'm not sure what to do to fix my .dat file and resolve the error.
.py file:
import numpy as np
import pandas as pd
import pyomo.environ as pyo
# probability model
# model parameters
model = pyo.AbstractModel()
model.k = pyo.Param(within=pyo.NonNegativeIntegers)
model.L = pyo.Param(within=pyo.NonNegativeReals)
model.J = pyo.RangeSet(1, model.k)
model.mean = pyo.Param(model.J)
model.var = pyo.Param(model.J)
# decision variable
model.n = pyo.Var(model.J, domain=pyo.NonNegativeIntegers)
# objective function
def objective(model):
return sum(model.n[j]*model.n[j]*model.var[j] for j in model.J)/(sum(model.n[j] for j in model.J)**2)
+ sum(model.n[j] for j in model.J)
model.Obj = pyo.Objective(rule=objective)
def constraint(model):
return (sum(model.n[j]*model.mean[j] for j in model.J)/sum(model.n[j] for j in model.J) >= model.L)
model.Const = pyo.Constraint(rule=constraint)
initial .dat file:
param k := 9 ;
param L := 0 ;
param mean := 0.9581711079943904 0.8838415730337069 0.8984853752157478 0.8986654447608105 0.8663875972671153 0.8211460863742999 0.7847600783146949 0.7788767153059641 0.7484350221893459 0.6894005956320362 ;
param var := 0.18608283075010482 0.3505045997323567 0.3302027274449947 0.3346348960541469 0.3985411187856784 0.47583289045335103 0.5711695307985707 0.595920918431739 0.639842447473589 0.7188389471803242 ;
first error:
[ 0.00] Setting up Pyomo environment
[ 0.00] Applying Pyomo preprocessing actions
[ 0.20] Creating model
ERROR: Constructing component 'mean' from data=0.9581711079943904:
0.8838415730337069, 0.8984853752157478: 0.8986654447608105,
0.8663875972671153: 0.8211460863742999, 0.7847600783146949:
0.7788767153059641, 0.7484350221893459: 0.6894005956320362 failed:
RuntimeError: Failed to set value for param=mean,
index=0.9581711079943904, value=0.8838415730337069.
source error message="Index '0.9581711079943904' is not valid for indexed
component 'mean'"
[ 0.20] Pyomo Finished
ERROR: Unexpected exception while running model:
Failed to set value for param=mean, index=0.9581711079943904,
value=0.8838415730337069.
source error message="Index '0.9581711079943904' is not valid for indexed
component 'mean'"
I thought it might be that I need to put the index before the value in my .dat file since the error listed consecutive values with the first as the index, so I changed my .dat file.
adjusted .dat file:
param k := 9 ;
param L := 0 ;
param mean := 0 0.9581711079943904 1 0.8838415730337069 2 0.8984853752157478 3 0.8986654447608105 4 0.8663875972671153 5 0.8211460863742999 6 0.7847600783146949 7 0.7788767153059641 8 0.7484350221893459 9 0.6894005956320362 ;
param var := 0 0.18608283075010482 1 0.3505045997323567 2 0.3302027274449947 3 0.3346348960541469 4 0.3985411187856784 5 0.47583289045335103 6 0.5711695307985707 7 0.595920918431739 8 0.639842447473589 9 0.7188389471803242 ;
second error:
[ 0.00] Setting up Pyomo environment
[ 0.00] Applying Pyomo preprocessing actions
[ 0.20] Creating model
ERROR: Constructing component 'mean' from data=0: 0.9581711079943904, 1:
0.8838415730337069, 2: 0.8984853752157478, 3: 0.8986654447608105, 4:
0.8663875972671153, 5: 0.8211460863742999, 6: 0.7847600783146949, 7:
0.7788767153059641, 8: 0.7484350221893459, 9: 0.6894005956320362 failed:
RuntimeError: Failed to set value for param=mean, index=0,
value=0.9581711079943904.
source error message="Index '0' is not valid for indexed component
'mean'"
[ 0.20] Pyomo Finished
ERROR: Unexpected exception while running model:
Failed to set value for param=mean, index=0, value=0.9581711079943904.
source error message="Index '0' is not valid for indexed component
'mean'"
Here it says 0 is not valid for indexed component. I'm not sure what to do since I just tired to copy the stuff on the link posted above. Does anybody know this error?
python pyomo ampl
add a comment |
So I'm trying to find an optimal solution to a problem. I tried to copy the format here: https://pyomo.readthedocs.io/en/latest/pyomo_overview/simple_examples.html
I made a .dat file and a model.py file but got a strange indexing error, tried to adjust my .dat file, got similar error. I'm not sure what to do to fix my .dat file and resolve the error.
.py file:
import numpy as np
import pandas as pd
import pyomo.environ as pyo
# probability model
# model parameters
model = pyo.AbstractModel()
model.k = pyo.Param(within=pyo.NonNegativeIntegers)
model.L = pyo.Param(within=pyo.NonNegativeReals)
model.J = pyo.RangeSet(1, model.k)
model.mean = pyo.Param(model.J)
model.var = pyo.Param(model.J)
# decision variable
model.n = pyo.Var(model.J, domain=pyo.NonNegativeIntegers)
# objective function
def objective(model):
return sum(model.n[j]*model.n[j]*model.var[j] for j in model.J)/(sum(model.n[j] for j in model.J)**2)
+ sum(model.n[j] for j in model.J)
model.Obj = pyo.Objective(rule=objective)
def constraint(model):
return (sum(model.n[j]*model.mean[j] for j in model.J)/sum(model.n[j] for j in model.J) >= model.L)
model.Const = pyo.Constraint(rule=constraint)
initial .dat file:
param k := 9 ;
param L := 0 ;
param mean := 0.9581711079943904 0.8838415730337069 0.8984853752157478 0.8986654447608105 0.8663875972671153 0.8211460863742999 0.7847600783146949 0.7788767153059641 0.7484350221893459 0.6894005956320362 ;
param var := 0.18608283075010482 0.3505045997323567 0.3302027274449947 0.3346348960541469 0.3985411187856784 0.47583289045335103 0.5711695307985707 0.595920918431739 0.639842447473589 0.7188389471803242 ;
first error:
[ 0.00] Setting up Pyomo environment
[ 0.00] Applying Pyomo preprocessing actions
[ 0.20] Creating model
ERROR: Constructing component 'mean' from data=0.9581711079943904:
0.8838415730337069, 0.8984853752157478: 0.8986654447608105,
0.8663875972671153: 0.8211460863742999, 0.7847600783146949:
0.7788767153059641, 0.7484350221893459: 0.6894005956320362 failed:
RuntimeError: Failed to set value for param=mean,
index=0.9581711079943904, value=0.8838415730337069.
source error message="Index '0.9581711079943904' is not valid for indexed
component 'mean'"
[ 0.20] Pyomo Finished
ERROR: Unexpected exception while running model:
Failed to set value for param=mean, index=0.9581711079943904,
value=0.8838415730337069.
source error message="Index '0.9581711079943904' is not valid for indexed
component 'mean'"
I thought it might be that I need to put the index before the value in my .dat file since the error listed consecutive values with the first as the index, so I changed my .dat file.
adjusted .dat file:
param k := 9 ;
param L := 0 ;
param mean := 0 0.9581711079943904 1 0.8838415730337069 2 0.8984853752157478 3 0.8986654447608105 4 0.8663875972671153 5 0.8211460863742999 6 0.7847600783146949 7 0.7788767153059641 8 0.7484350221893459 9 0.6894005956320362 ;
param var := 0 0.18608283075010482 1 0.3505045997323567 2 0.3302027274449947 3 0.3346348960541469 4 0.3985411187856784 5 0.47583289045335103 6 0.5711695307985707 7 0.595920918431739 8 0.639842447473589 9 0.7188389471803242 ;
second error:
[ 0.00] Setting up Pyomo environment
[ 0.00] Applying Pyomo preprocessing actions
[ 0.20] Creating model
ERROR: Constructing component 'mean' from data=0: 0.9581711079943904, 1:
0.8838415730337069, 2: 0.8984853752157478, 3: 0.8986654447608105, 4:
0.8663875972671153, 5: 0.8211460863742999, 6: 0.7847600783146949, 7:
0.7788767153059641, 8: 0.7484350221893459, 9: 0.6894005956320362 failed:
RuntimeError: Failed to set value for param=mean, index=0,
value=0.9581711079943904.
source error message="Index '0' is not valid for indexed component
'mean'"
[ 0.20] Pyomo Finished
ERROR: Unexpected exception while running model:
Failed to set value for param=mean, index=0, value=0.9581711079943904.
source error message="Index '0' is not valid for indexed component
'mean'"
Here it says 0 is not valid for indexed component. I'm not sure what to do since I just tired to copy the stuff on the link posted above. Does anybody know this error?
python pyomo ampl
So I'm trying to find an optimal solution to a problem. I tried to copy the format here: https://pyomo.readthedocs.io/en/latest/pyomo_overview/simple_examples.html
I made a .dat file and a model.py file but got a strange indexing error, tried to adjust my .dat file, got similar error. I'm not sure what to do to fix my .dat file and resolve the error.
.py file:
import numpy as np
import pandas as pd
import pyomo.environ as pyo
# probability model
# model parameters
model = pyo.AbstractModel()
model.k = pyo.Param(within=pyo.NonNegativeIntegers)
model.L = pyo.Param(within=pyo.NonNegativeReals)
model.J = pyo.RangeSet(1, model.k)
model.mean = pyo.Param(model.J)
model.var = pyo.Param(model.J)
# decision variable
model.n = pyo.Var(model.J, domain=pyo.NonNegativeIntegers)
# objective function
def objective(model):
return sum(model.n[j]*model.n[j]*model.var[j] for j in model.J)/(sum(model.n[j] for j in model.J)**2)
+ sum(model.n[j] for j in model.J)
model.Obj = pyo.Objective(rule=objective)
def constraint(model):
return (sum(model.n[j]*model.mean[j] for j in model.J)/sum(model.n[j] for j in model.J) >= model.L)
model.Const = pyo.Constraint(rule=constraint)
initial .dat file:
param k := 9 ;
param L := 0 ;
param mean := 0.9581711079943904 0.8838415730337069 0.8984853752157478 0.8986654447608105 0.8663875972671153 0.8211460863742999 0.7847600783146949 0.7788767153059641 0.7484350221893459 0.6894005956320362 ;
param var := 0.18608283075010482 0.3505045997323567 0.3302027274449947 0.3346348960541469 0.3985411187856784 0.47583289045335103 0.5711695307985707 0.595920918431739 0.639842447473589 0.7188389471803242 ;
first error:
[ 0.00] Setting up Pyomo environment
[ 0.00] Applying Pyomo preprocessing actions
[ 0.20] Creating model
ERROR: Constructing component 'mean' from data=0.9581711079943904:
0.8838415730337069, 0.8984853752157478: 0.8986654447608105,
0.8663875972671153: 0.8211460863742999, 0.7847600783146949:
0.7788767153059641, 0.7484350221893459: 0.6894005956320362 failed:
RuntimeError: Failed to set value for param=mean,
index=0.9581711079943904, value=0.8838415730337069.
source error message="Index '0.9581711079943904' is not valid for indexed
component 'mean'"
[ 0.20] Pyomo Finished
ERROR: Unexpected exception while running model:
Failed to set value for param=mean, index=0.9581711079943904,
value=0.8838415730337069.
source error message="Index '0.9581711079943904' is not valid for indexed
component 'mean'"
I thought it might be that I need to put the index before the value in my .dat file since the error listed consecutive values with the first as the index, so I changed my .dat file.
adjusted .dat file:
param k := 9 ;
param L := 0 ;
param mean := 0 0.9581711079943904 1 0.8838415730337069 2 0.8984853752157478 3 0.8986654447608105 4 0.8663875972671153 5 0.8211460863742999 6 0.7847600783146949 7 0.7788767153059641 8 0.7484350221893459 9 0.6894005956320362 ;
param var := 0 0.18608283075010482 1 0.3505045997323567 2 0.3302027274449947 3 0.3346348960541469 4 0.3985411187856784 5 0.47583289045335103 6 0.5711695307985707 7 0.595920918431739 8 0.639842447473589 9 0.7188389471803242 ;
second error:
[ 0.00] Setting up Pyomo environment
[ 0.00] Applying Pyomo preprocessing actions
[ 0.20] Creating model
ERROR: Constructing component 'mean' from data=0: 0.9581711079943904, 1:
0.8838415730337069, 2: 0.8984853752157478, 3: 0.8986654447608105, 4:
0.8663875972671153, 5: 0.8211460863742999, 6: 0.7847600783146949, 7:
0.7788767153059641, 8: 0.7484350221893459, 9: 0.6894005956320362 failed:
RuntimeError: Failed to set value for param=mean, index=0,
value=0.9581711079943904.
source error message="Index '0' is not valid for indexed component
'mean'"
[ 0.20] Pyomo Finished
ERROR: Unexpected exception while running model:
Failed to set value for param=mean, index=0, value=0.9581711079943904.
source error message="Index '0' is not valid for indexed component
'mean'"
Here it says 0 is not valid for indexed component. I'm not sure what to do since I just tired to copy the stuff on the link posted above. Does anybody know this error?
python pyomo ampl
python pyomo ampl
edited Mar 27 at 20:15
Ceeerson
asked Mar 22 at 22:17
CeeersonCeeerson
283
283
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
I hope you found the answer. If not, model.mean is indexed by model.J and model.J starts from "1" with RangeSet(1, model.k), not "0".
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55308486%2ferror-from-invalid-index-value-in-pyomo-any-tips%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I hope you found the answer. If not, model.mean is indexed by model.J and model.J starts from "1" with RangeSet(1, model.k), not "0".
add a comment |
I hope you found the answer. If not, model.mean is indexed by model.J and model.J starts from "1" with RangeSet(1, model.k), not "0".
add a comment |
I hope you found the answer. If not, model.mean is indexed by model.J and model.J starts from "1" with RangeSet(1, model.k), not "0".
I hope you found the answer. If not, model.mean is indexed by model.J and model.J starts from "1" with RangeSet(1, model.k), not "0".
answered Apr 4 at 19:27
kur agkur ag
473412
473412
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55308486%2ferror-from-invalid-index-value-in-pyomo-any-tips%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown