Why is Tensorflow segmentation network returning empty data when setting session parameter is_trainning as false to batchNorm layers?Get label prediction from Cifar-10 modelEquivalent of tf.identity with control dependency for an operation nodeUsing make_template() in TensorFlowIs FIFOQueue supported in TensorFlow for iOS?Batch normalization layer in Tensorflow is not updating its moving mean and moving varianceDeconvolution net with dynamic input width&heighttf.zeros vs tf.placeholder as RNN initial stateHow to get train loss and evaluate loss every global step in Tensorflow Estimator?TensorFlow: trainable flag - tf.nn.conv2d vs tf.layers.conv2dHow tensorflow pass through a deep learning model calculation?

What does this line mean in Zelazny's "The Courts of Chaos"?

How many sets of dice do I need for D&D?

How (un)safe is it to ride barefoot?

Is there a better way to do partial sums of array items in JavaScript?

How to Convert an Object into Array in magento 2

Selecting by attribute using Python and a list

In American Politics, why is the Justice Department under the President?

What do you call the action of "describing events as they happen" like sports anchors do?

Deciphering old handwriting from a 1850 church record

Was planting UN flag on Moon ever discussed?

How can powerful telekinesis avoid violating Newton's 3rd Law?

What's the best way to quit a job mostly because of money?

Mathematica 12 has gotten worse at solving simple equations?

What do I need to do, tax-wise, for a sudden windfall?

Forgot passport for Alaska cruise (Anchorage to Vancouver)

Print "N NE E SE S SW W NW"

How much web presence should I have?

How does AFV select the winning videos?

How to befriend someone who doesn't like to talk?

Professor Roman loves to teach unorthodox Chemistry

Was self-modifying code possible using BASIC?

My mom's return ticket is 3 days after I-94 expires

C++ logging library

How to generate list of *all* available commands and functions?



Why is Tensorflow segmentation network returning empty data when setting session parameter is_trainning as false to batchNorm layers?


Get label prediction from Cifar-10 modelEquivalent of tf.identity with control dependency for an operation nodeUsing make_template() in TensorFlowIs FIFOQueue supported in TensorFlow for iOS?Batch normalization layer in Tensorflow is not updating its moving mean and moving varianceDeconvolution net with dynamic input width&heighttf.zeros vs tf.placeholder as RNN initial stateHow to get train loss and evaluate loss every global step in Tensorflow Estimator?TensorFlow: trainable flag - tf.nn.conv2d vs tf.layers.conv2dHow tensorflow pass through a deep learning model calculation?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








1















I'm working with a a neural network for image segmentation using Tensorflow.

The training phase and inference run are ok if the is_traning parameter of the slim.batch_norm layer is set to True.
But when i run the session using is_training as false, meaning (in what i understand) just infering/forwarding data through the network the result segmentation image data comes out empty.

I believe it has to do with batchNorm layers but i've already lost my mind over it and i just can't make it work.



I'm using a code based in Semantic Segmentation Suite in TensorFlow.
Below is a simplified version of what works and what fails.



.....
def ConvBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
net = slim.conv2d(inputs, n_filters, kernel_size=[1, 1], activation_fn=None)
net = slim.batch_norm(net, fused=True, is_training=is_training)
net = tf.nn.relu(net)
return net

def DepthwiseSeparableConvBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
net = slim.separable_convolution2d(inputs, num_outputs=None, depth_multiplier=1, kernel_size=[3, 3], activation_fn=None)
net = slim.batch_norm(net, fused=True, is_training=is_training)
net = tf.nn.relu(net)
....
return net

def ConvTransposeBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
net = slim.conv2d_transpose(inputs, n_filters, kernel_size=[3, 3], stride=[2, 2], activation_fn=None)
net = slim.batch_norm(net,is_training=is_training)
net = tf.nn.relu(net)
return net

def build_mobile_unet(inputs, .... ,is_training=True):
net = ConvBlock(inputs, 64, is_training=is_training)
net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
net = slim.pool(net, [2, 2], stride=[2, 2], pooling_type='MAX')
....
net = ConvTransposeBlock(net, 64, is_training=is_training)
net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, scope='logits')
return net



# Define the param placeholders
net_input_image = tf.placeholder(tf.float32,shape=[None,None,None,3], name="input")
net_input_label = tf.placeholder(tf.int32, [None,None,None])
# Training phase placeholder
net_training = tf.placeholder(tf.bool, name='phase_train')

model, _ = build_mobile_unet(
net_input=net_input_image,
....
is_training=net_training)

model = tf.nn.softmax(model, name="softmax_output")

with tf.name_scope('loss'):
cross_entropy =tf.losses.sparse_softmax_cross_entropy(logits=model, labels=net_input_label)
cross_entropy = tf.reduce_mean(cross_entropy)

# use RMSProp to optimize
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.0001,decay=0.995)
train_step = optimizer.minimize(cross_entropy)

# create train OP
total_loss = tf.losses.get_total_loss()
train_op = slim.learning.create_train_op(total_loss,optimizer)


# Do the training here
for epoch in range(args.epoch_start_i, args.num_epochs):

input_image_batch = ...
label_image_batch = ...

# Do the training
train_dict=
net_input_image:input_image_batch,
net_input_label:label_image_batch,
net_training: True

train_loss=sess.run(train_op, feed_dict=train_dict)


# Do the validation on a small set of validation images
for ind in val_indices:

input_image = np.expand_dims(np.float32(utils.load_image(val_input_names[ind])[:args.crop_height, :args.crop_width]),axis=0)/255.0
gt = utils.load_image(val_output_names[ind])[:args.crop_height, :args.crop_width]
gt = helpers.reverse_one_hot(helpers.one_hot_it(gt, label_values))

# THIS WORKS : Image segmentation result is OK
output_image = sess.run(
model,
feed_dict=
net_input_image:input_image,
net_training: True
)
# THIS FAILS : Image segmentation result is all Zeros....
output_image = sess.run(
model,
feed_dict=
net_input_image:input_image,
net_training: False
)


The training works well, and the net converges and all....
and If i allways keep the placeholder net_training as True, all is well.



But is i invoke the sess.run(model,...net_training: False) as you can see in the code above while testing some images the output result comes out empty.



What i'm i doing wrong guys?
Any help would be highly appreciated.
Thank you for your time.










share|improve this question






























    1















    I'm working with a a neural network for image segmentation using Tensorflow.

    The training phase and inference run are ok if the is_traning parameter of the slim.batch_norm layer is set to True.
    But when i run the session using is_training as false, meaning (in what i understand) just infering/forwarding data through the network the result segmentation image data comes out empty.

    I believe it has to do with batchNorm layers but i've already lost my mind over it and i just can't make it work.



    I'm using a code based in Semantic Segmentation Suite in TensorFlow.
    Below is a simplified version of what works and what fails.



    .....
    def ConvBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
    net = slim.conv2d(inputs, n_filters, kernel_size=[1, 1], activation_fn=None)
    net = slim.batch_norm(net, fused=True, is_training=is_training)
    net = tf.nn.relu(net)
    return net

    def DepthwiseSeparableConvBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
    net = slim.separable_convolution2d(inputs, num_outputs=None, depth_multiplier=1, kernel_size=[3, 3], activation_fn=None)
    net = slim.batch_norm(net, fused=True, is_training=is_training)
    net = tf.nn.relu(net)
    ....
    return net

    def ConvTransposeBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
    net = slim.conv2d_transpose(inputs, n_filters, kernel_size=[3, 3], stride=[2, 2], activation_fn=None)
    net = slim.batch_norm(net,is_training=is_training)
    net = tf.nn.relu(net)
    return net

    def build_mobile_unet(inputs, .... ,is_training=True):
    net = ConvBlock(inputs, 64, is_training=is_training)
    net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
    net = slim.pool(net, [2, 2], stride=[2, 2], pooling_type='MAX')
    ....
    net = ConvTransposeBlock(net, 64, is_training=is_training)
    net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
    net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
    net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, scope='logits')
    return net



    # Define the param placeholders
    net_input_image = tf.placeholder(tf.float32,shape=[None,None,None,3], name="input")
    net_input_label = tf.placeholder(tf.int32, [None,None,None])
    # Training phase placeholder
    net_training = tf.placeholder(tf.bool, name='phase_train')

    model, _ = build_mobile_unet(
    net_input=net_input_image,
    ....
    is_training=net_training)

    model = tf.nn.softmax(model, name="softmax_output")

    with tf.name_scope('loss'):
    cross_entropy =tf.losses.sparse_softmax_cross_entropy(logits=model, labels=net_input_label)
    cross_entropy = tf.reduce_mean(cross_entropy)

    # use RMSProp to optimize
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
    optimizer = tf.train.RMSPropOptimizer(learning_rate=0.0001,decay=0.995)
    train_step = optimizer.minimize(cross_entropy)

    # create train OP
    total_loss = tf.losses.get_total_loss()
    train_op = slim.learning.create_train_op(total_loss,optimizer)


    # Do the training here
    for epoch in range(args.epoch_start_i, args.num_epochs):

    input_image_batch = ...
    label_image_batch = ...

    # Do the training
    train_dict=
    net_input_image:input_image_batch,
    net_input_label:label_image_batch,
    net_training: True

    train_loss=sess.run(train_op, feed_dict=train_dict)


    # Do the validation on a small set of validation images
    for ind in val_indices:

    input_image = np.expand_dims(np.float32(utils.load_image(val_input_names[ind])[:args.crop_height, :args.crop_width]),axis=0)/255.0
    gt = utils.load_image(val_output_names[ind])[:args.crop_height, :args.crop_width]
    gt = helpers.reverse_one_hot(helpers.one_hot_it(gt, label_values))

    # THIS WORKS : Image segmentation result is OK
    output_image = sess.run(
    model,
    feed_dict=
    net_input_image:input_image,
    net_training: True
    )
    # THIS FAILS : Image segmentation result is all Zeros....
    output_image = sess.run(
    model,
    feed_dict=
    net_input_image:input_image,
    net_training: False
    )


    The training works well, and the net converges and all....
    and If i allways keep the placeholder net_training as True, all is well.



    But is i invoke the sess.run(model,...net_training: False) as you can see in the code above while testing some images the output result comes out empty.



    What i'm i doing wrong guys?
    Any help would be highly appreciated.
    Thank you for your time.










    share|improve this question


























      1












      1








      1








      I'm working with a a neural network for image segmentation using Tensorflow.

      The training phase and inference run are ok if the is_traning parameter of the slim.batch_norm layer is set to True.
      But when i run the session using is_training as false, meaning (in what i understand) just infering/forwarding data through the network the result segmentation image data comes out empty.

      I believe it has to do with batchNorm layers but i've already lost my mind over it and i just can't make it work.



      I'm using a code based in Semantic Segmentation Suite in TensorFlow.
      Below is a simplified version of what works and what fails.



      .....
      def ConvBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
      net = slim.conv2d(inputs, n_filters, kernel_size=[1, 1], activation_fn=None)
      net = slim.batch_norm(net, fused=True, is_training=is_training)
      net = tf.nn.relu(net)
      return net

      def DepthwiseSeparableConvBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
      net = slim.separable_convolution2d(inputs, num_outputs=None, depth_multiplier=1, kernel_size=[3, 3], activation_fn=None)
      net = slim.batch_norm(net, fused=True, is_training=is_training)
      net = tf.nn.relu(net)
      ....
      return net

      def ConvTransposeBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
      net = slim.conv2d_transpose(inputs, n_filters, kernel_size=[3, 3], stride=[2, 2], activation_fn=None)
      net = slim.batch_norm(net,is_training=is_training)
      net = tf.nn.relu(net)
      return net

      def build_mobile_unet(inputs, .... ,is_training=True):
      net = ConvBlock(inputs, 64, is_training=is_training)
      net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
      net = slim.pool(net, [2, 2], stride=[2, 2], pooling_type='MAX')
      ....
      net = ConvTransposeBlock(net, 64, is_training=is_training)
      net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
      net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
      net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, scope='logits')
      return net



      # Define the param placeholders
      net_input_image = tf.placeholder(tf.float32,shape=[None,None,None,3], name="input")
      net_input_label = tf.placeholder(tf.int32, [None,None,None])
      # Training phase placeholder
      net_training = tf.placeholder(tf.bool, name='phase_train')

      model, _ = build_mobile_unet(
      net_input=net_input_image,
      ....
      is_training=net_training)

      model = tf.nn.softmax(model, name="softmax_output")

      with tf.name_scope('loss'):
      cross_entropy =tf.losses.sparse_softmax_cross_entropy(logits=model, labels=net_input_label)
      cross_entropy = tf.reduce_mean(cross_entropy)

      # use RMSProp to optimize
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      with tf.control_dependencies(update_ops):
      optimizer = tf.train.RMSPropOptimizer(learning_rate=0.0001,decay=0.995)
      train_step = optimizer.minimize(cross_entropy)

      # create train OP
      total_loss = tf.losses.get_total_loss()
      train_op = slim.learning.create_train_op(total_loss,optimizer)


      # Do the training here
      for epoch in range(args.epoch_start_i, args.num_epochs):

      input_image_batch = ...
      label_image_batch = ...

      # Do the training
      train_dict=
      net_input_image:input_image_batch,
      net_input_label:label_image_batch,
      net_training: True

      train_loss=sess.run(train_op, feed_dict=train_dict)


      # Do the validation on a small set of validation images
      for ind in val_indices:

      input_image = np.expand_dims(np.float32(utils.load_image(val_input_names[ind])[:args.crop_height, :args.crop_width]),axis=0)/255.0
      gt = utils.load_image(val_output_names[ind])[:args.crop_height, :args.crop_width]
      gt = helpers.reverse_one_hot(helpers.one_hot_it(gt, label_values))

      # THIS WORKS : Image segmentation result is OK
      output_image = sess.run(
      model,
      feed_dict=
      net_input_image:input_image,
      net_training: True
      )
      # THIS FAILS : Image segmentation result is all Zeros....
      output_image = sess.run(
      model,
      feed_dict=
      net_input_image:input_image,
      net_training: False
      )


      The training works well, and the net converges and all....
      and If i allways keep the placeholder net_training as True, all is well.



      But is i invoke the sess.run(model,...net_training: False) as you can see in the code above while testing some images the output result comes out empty.



      What i'm i doing wrong guys?
      Any help would be highly appreciated.
      Thank you for your time.










      share|improve this question
















      I'm working with a a neural network for image segmentation using Tensorflow.

      The training phase and inference run are ok if the is_traning parameter of the slim.batch_norm layer is set to True.
      But when i run the session using is_training as false, meaning (in what i understand) just infering/forwarding data through the network the result segmentation image data comes out empty.

      I believe it has to do with batchNorm layers but i've already lost my mind over it and i just can't make it work.



      I'm using a code based in Semantic Segmentation Suite in TensorFlow.
      Below is a simplified version of what works and what fails.



      .....
      def ConvBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
      net = slim.conv2d(inputs, n_filters, kernel_size=[1, 1], activation_fn=None)
      net = slim.batch_norm(net, fused=True, is_training=is_training)
      net = tf.nn.relu(net)
      return net

      def DepthwiseSeparableConvBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
      net = slim.separable_convolution2d(inputs, num_outputs=None, depth_multiplier=1, kernel_size=[3, 3], activation_fn=None)
      net = slim.batch_norm(net, fused=True, is_training=is_training)
      net = tf.nn.relu(net)
      ....
      return net

      def ConvTransposeBlock(inputs, n_filters, kernel_size=[3, 3],is_training=True):
      net = slim.conv2d_transpose(inputs, n_filters, kernel_size=[3, 3], stride=[2, 2], activation_fn=None)
      net = slim.batch_norm(net,is_training=is_training)
      net = tf.nn.relu(net)
      return net

      def build_mobile_unet(inputs, .... ,is_training=True):
      net = ConvBlock(inputs, 64, is_training=is_training)
      net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
      net = slim.pool(net, [2, 2], stride=[2, 2], pooling_type='MAX')
      ....
      net = ConvTransposeBlock(net, 64, is_training=is_training)
      net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
      net = DepthwiseSeparableConvBlock(net, 64, is_training=is_training)
      net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, scope='logits')
      return net



      # Define the param placeholders
      net_input_image = tf.placeholder(tf.float32,shape=[None,None,None,3], name="input")
      net_input_label = tf.placeholder(tf.int32, [None,None,None])
      # Training phase placeholder
      net_training = tf.placeholder(tf.bool, name='phase_train')

      model, _ = build_mobile_unet(
      net_input=net_input_image,
      ....
      is_training=net_training)

      model = tf.nn.softmax(model, name="softmax_output")

      with tf.name_scope('loss'):
      cross_entropy =tf.losses.sparse_softmax_cross_entropy(logits=model, labels=net_input_label)
      cross_entropy = tf.reduce_mean(cross_entropy)

      # use RMSProp to optimize
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      with tf.control_dependencies(update_ops):
      optimizer = tf.train.RMSPropOptimizer(learning_rate=0.0001,decay=0.995)
      train_step = optimizer.minimize(cross_entropy)

      # create train OP
      total_loss = tf.losses.get_total_loss()
      train_op = slim.learning.create_train_op(total_loss,optimizer)


      # Do the training here
      for epoch in range(args.epoch_start_i, args.num_epochs):

      input_image_batch = ...
      label_image_batch = ...

      # Do the training
      train_dict=
      net_input_image:input_image_batch,
      net_input_label:label_image_batch,
      net_training: True

      train_loss=sess.run(train_op, feed_dict=train_dict)


      # Do the validation on a small set of validation images
      for ind in val_indices:

      input_image = np.expand_dims(np.float32(utils.load_image(val_input_names[ind])[:args.crop_height, :args.crop_width]),axis=0)/255.0
      gt = utils.load_image(val_output_names[ind])[:args.crop_height, :args.crop_width]
      gt = helpers.reverse_one_hot(helpers.one_hot_it(gt, label_values))

      # THIS WORKS : Image segmentation result is OK
      output_image = sess.run(
      model,
      feed_dict=
      net_input_image:input_image,
      net_training: True
      )
      # THIS FAILS : Image segmentation result is all Zeros....
      output_image = sess.run(
      model,
      feed_dict=
      net_input_image:input_image,
      net_training: False
      )


      The training works well, and the net converges and all....
      and If i allways keep the placeholder net_training as True, all is well.



      But is i invoke the sess.run(model,...net_training: False) as you can see in the code above while testing some images the output result comes out empty.



      What i'm i doing wrong guys?
      Any help would be highly appreciated.
      Thank you for your time.







      tensorflow image-segmentation training-data inference tensorflow-slim






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 24 at 22:51







      user2880065

















      asked Mar 24 at 22:41









      user2880065user2880065

      84




      84






















          0






          active

          oldest

          votes












          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55329278%2fwhy-is-tensorflow-segmentation-network-returning-empty-data-when-setting-session%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55329278%2fwhy-is-tensorflow-segmentation-network-returning-empty-data-when-setting-session%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

          SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

          은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현