How to generate a unix time column from “year”,“date”,“month”,“time” columns, preferrably using pandas module for pythonDoes pandas iterrows have performance issues?How to get file creation & modification date/times in Python?How to get the current time in PythonHow can I make a time delay in Python?How to remove an element from a list by index?How to remove a key from a Python dictionary?Adding new column to existing DataFrame in Python pandasDelete column from pandas DataFrameSelect rows from a DataFrame based on values in a column in pandasGet list from pandas DataFrame column headersModify Pandas dataframe to list year month and date

How to draw a gif with expanding circles that reveal lines connecting a non-centered point to the expanding circle using Tikz

Doing research in academia and not liking competition

Extract an attribute value from XML

Back to the nineties!

Is this more than a packing puzzle?

Why do they not say "The Baby"

How can I legally visit the United States Minor Outlying Islands in the Pacific?

Are L-functions uniquely determined by their values at negative integers?

How are "soeben" and "eben" different from one another?

Adding a vertical line at the right end of the horizontal line in frac

How would someone destroy a black hole that’s at the centre of a planet?

Is a public company able to check out who owns its shares in very detailed format?

Should you avoid redundant information after dialogue?

Crab Nebula short story from 1960s or '70s

Could the crash sites of the Apollo 11 and 16 LMs be seen by the LRO?

Can a continent naturally split into two distant parts within a week?

Absconding a company after 1st day of joining

Why hasn't the U.S. government paid war reparations to any country it attacked?

What caused Windows ME's terrible reputation?

Can I capture stereo IQ signals from WebSDR?

Replacing URI when using dynamic hosts in Nginx reverse proxy

As a DM, how to avoid unconscious metagaming when dealing with a high AC character?

Does ability to impeach an expert witness on science or scholarship go too far?

What is the closed form of the following recursive function?



How to generate a unix time column from “year”,“date”,“month”,“time” columns, preferrably using pandas module for python


Does pandas iterrows have performance issues?How to get file creation & modification date/times in Python?How to get the current time in PythonHow can I make a time delay in Python?How to remove an element from a list by index?How to remove a key from a Python dictionary?Adding new column to existing DataFrame in Python pandasDelete column from pandas DataFrameSelect rows from a DataFrame based on values in a column in pandasGet list from pandas DataFrame column headersModify Pandas dataframe to list year month and date






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1















There is an excel file logging a set of data. Its columns are as below, where each column is seperated by comma.



SampleData
year,date,month,location,time,count
2019,20,Jan,Japan,22:33,1
2019,31,Jan,Japan,19:21,1
2019,1,Jan,Japan,8:00,1
2019,4,Jan,Japan,4:28,2
2019,13,Feb,Japan,6:19,1


From this data, I would like to create python pandas dataframe, which looks like below.



DataFrame
u_datetime,location,count
1547991180,Japan,1
1548930060,Japan,1
1546297200,Japan,1
1546543680,Japan,2
1550006340,Japan,1


One of the DataFrame methods can be useful for this operation, but it does not take date with one digit.



pandas.to_datetime(
DataFrame["year"].astype(str)
+ DataFrame["month"].astype(str)
+ DataFrame["date"].astype(str)
+ DataFrame["time"].astype(str),
format="%Y%b%d%-H%M"
)


Could anybody give me a hand?



Thank you.










share|improve this question






























    1















    There is an excel file logging a set of data. Its columns are as below, where each column is seperated by comma.



    SampleData
    year,date,month,location,time,count
    2019,20,Jan,Japan,22:33,1
    2019,31,Jan,Japan,19:21,1
    2019,1,Jan,Japan,8:00,1
    2019,4,Jan,Japan,4:28,2
    2019,13,Feb,Japan,6:19,1


    From this data, I would like to create python pandas dataframe, which looks like below.



    DataFrame
    u_datetime,location,count
    1547991180,Japan,1
    1548930060,Japan,1
    1546297200,Japan,1
    1546543680,Japan,2
    1550006340,Japan,1


    One of the DataFrame methods can be useful for this operation, but it does not take date with one digit.



    pandas.to_datetime(
    DataFrame["year"].astype(str)
    + DataFrame["month"].astype(str)
    + DataFrame["date"].astype(str)
    + DataFrame["time"].astype(str),
    format="%Y%b%d%-H%M"
    )


    Could anybody give me a hand?



    Thank you.










    share|improve this question


























      1












      1








      1








      There is an excel file logging a set of data. Its columns are as below, where each column is seperated by comma.



      SampleData
      year,date,month,location,time,count
      2019,20,Jan,Japan,22:33,1
      2019,31,Jan,Japan,19:21,1
      2019,1,Jan,Japan,8:00,1
      2019,4,Jan,Japan,4:28,2
      2019,13,Feb,Japan,6:19,1


      From this data, I would like to create python pandas dataframe, which looks like below.



      DataFrame
      u_datetime,location,count
      1547991180,Japan,1
      1548930060,Japan,1
      1546297200,Japan,1
      1546543680,Japan,2
      1550006340,Japan,1


      One of the DataFrame methods can be useful for this operation, but it does not take date with one digit.



      pandas.to_datetime(
      DataFrame["year"].astype(str)
      + DataFrame["month"].astype(str)
      + DataFrame["date"].astype(str)
      + DataFrame["time"].astype(str),
      format="%Y%b%d%-H%M"
      )


      Could anybody give me a hand?



      Thank you.










      share|improve this question
















      There is an excel file logging a set of data. Its columns are as below, where each column is seperated by comma.



      SampleData
      year,date,month,location,time,count
      2019,20,Jan,Japan,22:33,1
      2019,31,Jan,Japan,19:21,1
      2019,1,Jan,Japan,8:00,1
      2019,4,Jan,Japan,4:28,2
      2019,13,Feb,Japan,6:19,1


      From this data, I would like to create python pandas dataframe, which looks like below.



      DataFrame
      u_datetime,location,count
      1547991180,Japan,1
      1548930060,Japan,1
      1546297200,Japan,1
      1546543680,Japan,2
      1550006340,Japan,1


      One of the DataFrame methods can be useful for this operation, but it does not take date with one digit.



      pandas.to_datetime(
      DataFrame["year"].astype(str)
      + DataFrame["month"].astype(str)
      + DataFrame["date"].astype(str)
      + DataFrame["time"].astype(str),
      format="%Y%b%d%-H%M"
      )


      Could anybody give me a hand?



      Thank you.







      python pandas






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 26 at 7:00









      Erik Cederstrand

      4,0393 gold badges23 silver badges48 bronze badges




      4,0393 gold badges23 silver badges48 bronze badges










      asked Mar 26 at 6:31









      wisywisy

      61 bronze badge




      61 bronze badge






















          3 Answers
          3






          active

          oldest

          votes


















          1














          try this



          from datetime import datetime

          data['datetime'] = data[['year','date','month','time']].apply(lambda x: datetime.strptime(str(x['year'])+'-'+str(x['date'])+'-'+str(x['month'])+' '+str(x['time']), "%Y-%d-%b %H:%M").timestamp(), axis=1)

          data[['datetime','location','count']]


          Output



           datetime 
          0 1548003780.0
          1 1548942660.0
          2 1546309800.0
          3 1546556280.0
          4 1550018940.0

          location
          0 Japan
          1 Japan
          2 Japan
          3 Japan
          4 Japan

          count
          0 1
          1 1
          2 1
          3 2
          4 1





          share|improve this answer

























          • Yes, your solution working, but OP need pandas solution, not python. Also apply are loops under the hood, so better not use if exist vectorized solutions, here function pd.to_datetime. link

            – jezrael
            Mar 26 at 7:22



















          1














          In case you are working with csv file this can be done easily using parse_dates.



          dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
          df = pd.read_csv('/home/users/user/xxx.csv', parse_dates ='date_time':[0,1,2,4])
          df['u_datetime'] = df['date_time'].values.astype(np.int64) // 10 ** 9
          df_new = df[['u_datetime', 'location', 'count']]





          share|improve this answer






























            0














            You are close, need %Y%b%d%H:%M format and then convert to unix time by cast to int64 with integer division by 10**9:



            s = (DataFrame["year"].astype(str)+
            DataFrame["month"].astype(str)+
            DataFrame["date"].astype(str)+
            DataFrame["time"].astype(str))
            DataFrame['u_datetime'] = pd.to_datetime(s, format="%Y%b%d%H:%M").astype(np.int64) // 10**9

            DataFrame = DataFrame[['u_datetime','location','count']]
            print (DataFrame)
            u_datetime location count
            0 1548023580 Japan 1
            1 1548962460 Japan 1
            2 1546329600 Japan 1
            3 1546576080 Japan 2
            4 1550038740 Japan 1





            share|improve this answer

























              Your Answer






              StackExchange.ifUsing("editor", function ()
              StackExchange.using("externalEditor", function ()
              StackExchange.using("snippets", function ()
              StackExchange.snippets.init();
              );
              );
              , "code-snippets");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "1"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55351039%2fhow-to-generate-a-unix-time-column-from-year-date-month-time-columns-pr%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1














              try this



              from datetime import datetime

              data['datetime'] = data[['year','date','month','time']].apply(lambda x: datetime.strptime(str(x['year'])+'-'+str(x['date'])+'-'+str(x['month'])+' '+str(x['time']), "%Y-%d-%b %H:%M").timestamp(), axis=1)

              data[['datetime','location','count']]


              Output



               datetime 
              0 1548003780.0
              1 1548942660.0
              2 1546309800.0
              3 1546556280.0
              4 1550018940.0

              location
              0 Japan
              1 Japan
              2 Japan
              3 Japan
              4 Japan

              count
              0 1
              1 1
              2 1
              3 2
              4 1





              share|improve this answer

























              • Yes, your solution working, but OP need pandas solution, not python. Also apply are loops under the hood, so better not use if exist vectorized solutions, here function pd.to_datetime. link

                – jezrael
                Mar 26 at 7:22
















              1














              try this



              from datetime import datetime

              data['datetime'] = data[['year','date','month','time']].apply(lambda x: datetime.strptime(str(x['year'])+'-'+str(x['date'])+'-'+str(x['month'])+' '+str(x['time']), "%Y-%d-%b %H:%M").timestamp(), axis=1)

              data[['datetime','location','count']]


              Output



               datetime 
              0 1548003780.0
              1 1548942660.0
              2 1546309800.0
              3 1546556280.0
              4 1550018940.0

              location
              0 Japan
              1 Japan
              2 Japan
              3 Japan
              4 Japan

              count
              0 1
              1 1
              2 1
              3 2
              4 1





              share|improve this answer

























              • Yes, your solution working, but OP need pandas solution, not python. Also apply are loops under the hood, so better not use if exist vectorized solutions, here function pd.to_datetime. link

                – jezrael
                Mar 26 at 7:22














              1












              1








              1







              try this



              from datetime import datetime

              data['datetime'] = data[['year','date','month','time']].apply(lambda x: datetime.strptime(str(x['year'])+'-'+str(x['date'])+'-'+str(x['month'])+' '+str(x['time']), "%Y-%d-%b %H:%M").timestamp(), axis=1)

              data[['datetime','location','count']]


              Output



               datetime 
              0 1548003780.0
              1 1548942660.0
              2 1546309800.0
              3 1546556280.0
              4 1550018940.0

              location
              0 Japan
              1 Japan
              2 Japan
              3 Japan
              4 Japan

              count
              0 1
              1 1
              2 1
              3 2
              4 1





              share|improve this answer















              try this



              from datetime import datetime

              data['datetime'] = data[['year','date','month','time']].apply(lambda x: datetime.strptime(str(x['year'])+'-'+str(x['date'])+'-'+str(x['month'])+' '+str(x['time']), "%Y-%d-%b %H:%M").timestamp(), axis=1)

              data[['datetime','location','count']]


              Output



               datetime 
              0 1548003780.0
              1 1548942660.0
              2 1546309800.0
              3 1546556280.0
              4 1550018940.0

              location
              0 Japan
              1 Japan
              2 Japan
              3 Japan
              4 Japan

              count
              0 1
              1 1
              2 1
              3 2
              4 1






              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited Mar 26 at 7:18

























              answered Mar 26 at 6:46









              iamklausiamklaus

              2,3761 gold badge6 silver badges18 bronze badges




              2,3761 gold badge6 silver badges18 bronze badges












              • Yes, your solution working, but OP need pandas solution, not python. Also apply are loops under the hood, so better not use if exist vectorized solutions, here function pd.to_datetime. link

                – jezrael
                Mar 26 at 7:22


















              • Yes, your solution working, but OP need pandas solution, not python. Also apply are loops under the hood, so better not use if exist vectorized solutions, here function pd.to_datetime. link

                – jezrael
                Mar 26 at 7:22

















              Yes, your solution working, but OP need pandas solution, not python. Also apply are loops under the hood, so better not use if exist vectorized solutions, here function pd.to_datetime. link

              – jezrael
              Mar 26 at 7:22






              Yes, your solution working, but OP need pandas solution, not python. Also apply are loops under the hood, so better not use if exist vectorized solutions, here function pd.to_datetime. link

              – jezrael
              Mar 26 at 7:22














              1














              In case you are working with csv file this can be done easily using parse_dates.



              dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
              df = pd.read_csv('/home/users/user/xxx.csv', parse_dates ='date_time':[0,1,2,4])
              df['u_datetime'] = df['date_time'].values.astype(np.int64) // 10 ** 9
              df_new = df[['u_datetime', 'location', 'count']]





              share|improve this answer



























                1














                In case you are working with csv file this can be done easily using parse_dates.



                dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
                df = pd.read_csv('/home/users/user/xxx.csv', parse_dates ='date_time':[0,1,2,4])
                df['u_datetime'] = df['date_time'].values.astype(np.int64) // 10 ** 9
                df_new = df[['u_datetime', 'location', 'count']]





                share|improve this answer

























                  1












                  1








                  1







                  In case you are working with csv file this can be done easily using parse_dates.



                  dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
                  df = pd.read_csv('/home/users/user/xxx.csv', parse_dates ='date_time':[0,1,2,4])
                  df['u_datetime'] = df['date_time'].values.astype(np.int64) // 10 ** 9
                  df_new = df[['u_datetime', 'location', 'count']]





                  share|improve this answer













                  In case you are working with csv file this can be done easily using parse_dates.



                  dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
                  df = pd.read_csv('/home/users/user/xxx.csv', parse_dates ='date_time':[0,1,2,4])
                  df['u_datetime'] = df['date_time'].values.astype(np.int64) // 10 ** 9
                  df_new = df[['u_datetime', 'location', 'count']]






                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Mar 26 at 8:20









                  LoochieLoochie

                  1,0063 silver badges11 bronze badges




                  1,0063 silver badges11 bronze badges





















                      0














                      You are close, need %Y%b%d%H:%M format and then convert to unix time by cast to int64 with integer division by 10**9:



                      s = (DataFrame["year"].astype(str)+
                      DataFrame["month"].astype(str)+
                      DataFrame["date"].astype(str)+
                      DataFrame["time"].astype(str))
                      DataFrame['u_datetime'] = pd.to_datetime(s, format="%Y%b%d%H:%M").astype(np.int64) // 10**9

                      DataFrame = DataFrame[['u_datetime','location','count']]
                      print (DataFrame)
                      u_datetime location count
                      0 1548023580 Japan 1
                      1 1548962460 Japan 1
                      2 1546329600 Japan 1
                      3 1546576080 Japan 2
                      4 1550038740 Japan 1





                      share|improve this answer



























                        0














                        You are close, need %Y%b%d%H:%M format and then convert to unix time by cast to int64 with integer division by 10**9:



                        s = (DataFrame["year"].astype(str)+
                        DataFrame["month"].astype(str)+
                        DataFrame["date"].astype(str)+
                        DataFrame["time"].astype(str))
                        DataFrame['u_datetime'] = pd.to_datetime(s, format="%Y%b%d%H:%M").astype(np.int64) // 10**9

                        DataFrame = DataFrame[['u_datetime','location','count']]
                        print (DataFrame)
                        u_datetime location count
                        0 1548023580 Japan 1
                        1 1548962460 Japan 1
                        2 1546329600 Japan 1
                        3 1546576080 Japan 2
                        4 1550038740 Japan 1





                        share|improve this answer

























                          0












                          0








                          0







                          You are close, need %Y%b%d%H:%M format and then convert to unix time by cast to int64 with integer division by 10**9:



                          s = (DataFrame["year"].astype(str)+
                          DataFrame["month"].astype(str)+
                          DataFrame["date"].astype(str)+
                          DataFrame["time"].astype(str))
                          DataFrame['u_datetime'] = pd.to_datetime(s, format="%Y%b%d%H:%M").astype(np.int64) // 10**9

                          DataFrame = DataFrame[['u_datetime','location','count']]
                          print (DataFrame)
                          u_datetime location count
                          0 1548023580 Japan 1
                          1 1548962460 Japan 1
                          2 1546329600 Japan 1
                          3 1546576080 Japan 2
                          4 1550038740 Japan 1





                          share|improve this answer













                          You are close, need %Y%b%d%H:%M format and then convert to unix time by cast to int64 with integer division by 10**9:



                          s = (DataFrame["year"].astype(str)+
                          DataFrame["month"].astype(str)+
                          DataFrame["date"].astype(str)+
                          DataFrame["time"].astype(str))
                          DataFrame['u_datetime'] = pd.to_datetime(s, format="%Y%b%d%H:%M").astype(np.int64) // 10**9

                          DataFrame = DataFrame[['u_datetime','location','count']]
                          print (DataFrame)
                          u_datetime location count
                          0 1548023580 Japan 1
                          1 1548962460 Japan 1
                          2 1546329600 Japan 1
                          3 1546576080 Japan 2
                          4 1550038740 Japan 1






                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered Mar 26 at 6:50









                          jezraeljezrael

                          388k28 gold badges391 silver badges467 bronze badges




                          388k28 gold badges391 silver badges467 bronze badges



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Stack Overflow!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55351039%2fhow-to-generate-a-unix-time-column-from-year-date-month-time-columns-pr%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

                              SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

                              은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현