Mystifying microbenchmark result for stream API on Java 12 vs. Java 8 with -gc trueIs Java “pass-by-reference” or “pass-by-value”?Does a finally block always get executed in Java?What is the difference between public, protected, package-private and private in Java?How do I call one constructor from another in Java?How do I determine whether an array contains a particular value in Java?How do I convert a String to an int in Java?Creating a memory leak with JavaWhy is subtracting these two times (in 1927) giving a strange result?How to Convert a Java 8 Stream to an Array?Java SQL error with my own MySQL server SQLNonTransientConnectionException

Why won't the Republicans use a superdelegate system like the DNC in their nomination process?

Sums of binomial coefficients weighted by incomplete gamma

Why aren't rockets built with truss structures inside their fuel & oxidizer tanks to increase structural strength?

Telephone number in spoken words

Does an Irish VISA WARNING count as "refused entry at the border of any country other than the UK?"

How can I find an old paper when the usual methods fail?

What is the proper name for a circle with a line through it?

Go to last file in vim

Why aren't rainbows blurred-out into nothing after they are produced?

How to prevent criminal gangs from making/buying guns?

Souce that you can't you tell your wife not to lend to others?

Number in overlapping range

What is the farthest a camera can see?

Escape Velocity - Won't the orbital path just become larger with higher initial velocity?

Is there a word for returning to unpreparedness?

Are there liquid fueled rocket boosters having coaxial fuel/oxidizer tanks?

What was the intention with the Commodore 128?

Scam? Phone call from "Department of Social Security" asking me to call back

Does the C++ standard guarantee that a failed insertion into an associative container will not modify the rvalue-reference argument?

How to gracefully leave a company you helped start?

Good textbook for queueing theory and performance modeling

Output the list of musical notes

Did Michelle Obama have a staff of 23; and Melania have a staff of 4?

What should we do with manuals from the 80s?



Mystifying microbenchmark result for stream API on Java 12 vs. Java 8 with -gc true


Is Java “pass-by-reference” or “pass-by-value”?Does a finally block always get executed in Java?What is the difference between public, protected, package-private and private in Java?How do I call one constructor from another in Java?How do I determine whether an array contains a particular value in Java?How do I convert a String to an int in Java?Creating a memory leak with JavaWhy is subtracting these two times (in 1927) giving a strange result?How to Convert a Java 8 Stream to an Array?Java SQL error with my own MySQL server SQLNonTransientConnectionException






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








55















As part of my investigation on the difference between using a complex filter or multiple filters in streams, I notice that performance on Java 12 is way slower than on Java 8.



Is any explanation for those weird results? Did I miss something here?



Configuration:




  • java 8



    • OpenJDK Runtime Environment (build 1.8.0_181-8u181-b13-2~deb9u1-b13)

    • OpenJDK 64-Bit Server VM (build 25.181-b13, mixed mode)



  • java 12



    • OpenJDK Runtime Environment (build 12+33)

    • OpenJDK 64-Bit Server VM (build 12+33, mixed mode, sharing)


  • VM options: -XX:+UseG1GC -server -Xmx1024m -Xms1024m


  • CPU: 8 cores

JMH Throughput Results:



  • Warmup: 10 iterations, 1 s each

  • Measurement: 10 iterations, 1 s each

  • Threads: 1 thread, will synchronize iterations

  • Units: ops/s

Comparison tables



Code



Stream + complex filter



public void complexFilter(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.filter(d -> d < Math.PI
&& d > Math.E
&& d != 3
&& d != 2)
.count();

blackhole.consume(count);



Stream + multiple filters



public void multipleFilters(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.filter(d -> d > Math.PI)
.filter(d -> d < Math.E)
.filter(d -> d != 3)
.filter(d -> d != 2)
.count();

blackhole.consume(count);



Parallel stream + complex filter



public void complexFilterParallel(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.parallel()
.filter(d -> d < Math.PI
&& d > Math.E
&& d != 3
&& d != 2)
.count();

blackhole.consume(count);



Parallel stream + multiple filters



public void multipleFiltersParallel(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.parallel()
.filter(d -> d > Math.PI)
.filter(d -> d < Math.E)
.filter(d -> d != 3)
.filter(d -> d != 2)
.count();

blackhole.consume(count);




Old fashion java iteration



public void oldFashionFilters(ExecutionPlan plan, Blackhole blackhole) 
long count = 0;
for (int i = 0; i < plan.getDoubles().size(); i++)
if (plan.getDoubles().get(i) > Math.PI
&& plan.getDoubles().get(i) > Math.E
&& plan.getDoubles().get(i) != 3
&& plan.getDoubles().get(i) != 2)
count = count + 1;



blackhole.consume(count);




You can try by yourself by running docker command:



For Java 8:




docker run -it volkodav/java-filter-benchmark:java8




For Java 12:




docker run -it volkodav/java-filter-benchmark:java12




Source code:



https://github.com/volkodavs/javafilters-benchmarks










share|improve this question





















  • 21





    What's the meaning of those numbers?

    – marstran
    Mar 27 at 11:13






  • 7





    Pretty sure -gc true in your configuration wrecks it up for jdk12. Forcing Full GC before each iteration is quite likely to throw off GC heuristics. Why do you have that option to begin with?

    – Aleksey Shipilev
    Mar 27 at 16:54







  • 8





    Also, why @Setup(Level.Invocation)? It seems your workload wants to collect all the pitfalls at once :)

    – Aleksey Shipilev
    Mar 27 at 17:11







  • 7





    The answer might be too complicated to fit the comment. The difference seems to be real, and there are weird inlining oddities in jdk12 case, as can be seen with -prof perfasm.

    – Aleksey Shipilev
    Mar 27 at 17:39







  • 12





    I now think there is a weird interaction between Full GC and concurrent compilations. -gc true is not recommended for lots of reasons, this might be a new one. Still digging...

    – Aleksey Shipilev
    Mar 27 at 17:55

















55















As part of my investigation on the difference between using a complex filter or multiple filters in streams, I notice that performance on Java 12 is way slower than on Java 8.



Is any explanation for those weird results? Did I miss something here?



Configuration:




  • java 8



    • OpenJDK Runtime Environment (build 1.8.0_181-8u181-b13-2~deb9u1-b13)

    • OpenJDK 64-Bit Server VM (build 25.181-b13, mixed mode)



  • java 12



    • OpenJDK Runtime Environment (build 12+33)

    • OpenJDK 64-Bit Server VM (build 12+33, mixed mode, sharing)


  • VM options: -XX:+UseG1GC -server -Xmx1024m -Xms1024m


  • CPU: 8 cores

JMH Throughput Results:



  • Warmup: 10 iterations, 1 s each

  • Measurement: 10 iterations, 1 s each

  • Threads: 1 thread, will synchronize iterations

  • Units: ops/s

Comparison tables



Code



Stream + complex filter



public void complexFilter(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.filter(d -> d < Math.PI
&& d > Math.E
&& d != 3
&& d != 2)
.count();

blackhole.consume(count);



Stream + multiple filters



public void multipleFilters(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.filter(d -> d > Math.PI)
.filter(d -> d < Math.E)
.filter(d -> d != 3)
.filter(d -> d != 2)
.count();

blackhole.consume(count);



Parallel stream + complex filter



public void complexFilterParallel(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.parallel()
.filter(d -> d < Math.PI
&& d > Math.E
&& d != 3
&& d != 2)
.count();

blackhole.consume(count);



Parallel stream + multiple filters



public void multipleFiltersParallel(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.parallel()
.filter(d -> d > Math.PI)
.filter(d -> d < Math.E)
.filter(d -> d != 3)
.filter(d -> d != 2)
.count();

blackhole.consume(count);




Old fashion java iteration



public void oldFashionFilters(ExecutionPlan plan, Blackhole blackhole) 
long count = 0;
for (int i = 0; i < plan.getDoubles().size(); i++)
if (plan.getDoubles().get(i) > Math.PI
&& plan.getDoubles().get(i) > Math.E
&& plan.getDoubles().get(i) != 3
&& plan.getDoubles().get(i) != 2)
count = count + 1;



blackhole.consume(count);




You can try by yourself by running docker command:



For Java 8:




docker run -it volkodav/java-filter-benchmark:java8




For Java 12:




docker run -it volkodav/java-filter-benchmark:java12




Source code:



https://github.com/volkodavs/javafilters-benchmarks










share|improve this question





















  • 21





    What's the meaning of those numbers?

    – marstran
    Mar 27 at 11:13






  • 7





    Pretty sure -gc true in your configuration wrecks it up for jdk12. Forcing Full GC before each iteration is quite likely to throw off GC heuristics. Why do you have that option to begin with?

    – Aleksey Shipilev
    Mar 27 at 16:54







  • 8





    Also, why @Setup(Level.Invocation)? It seems your workload wants to collect all the pitfalls at once :)

    – Aleksey Shipilev
    Mar 27 at 17:11







  • 7





    The answer might be too complicated to fit the comment. The difference seems to be real, and there are weird inlining oddities in jdk12 case, as can be seen with -prof perfasm.

    – Aleksey Shipilev
    Mar 27 at 17:39







  • 12





    I now think there is a weird interaction between Full GC and concurrent compilations. -gc true is not recommended for lots of reasons, this might be a new one. Still digging...

    – Aleksey Shipilev
    Mar 27 at 17:55













55












55








55


13






As part of my investigation on the difference between using a complex filter or multiple filters in streams, I notice that performance on Java 12 is way slower than on Java 8.



Is any explanation for those weird results? Did I miss something here?



Configuration:




  • java 8



    • OpenJDK Runtime Environment (build 1.8.0_181-8u181-b13-2~deb9u1-b13)

    • OpenJDK 64-Bit Server VM (build 25.181-b13, mixed mode)



  • java 12



    • OpenJDK Runtime Environment (build 12+33)

    • OpenJDK 64-Bit Server VM (build 12+33, mixed mode, sharing)


  • VM options: -XX:+UseG1GC -server -Xmx1024m -Xms1024m


  • CPU: 8 cores

JMH Throughput Results:



  • Warmup: 10 iterations, 1 s each

  • Measurement: 10 iterations, 1 s each

  • Threads: 1 thread, will synchronize iterations

  • Units: ops/s

Comparison tables



Code



Stream + complex filter



public void complexFilter(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.filter(d -> d < Math.PI
&& d > Math.E
&& d != 3
&& d != 2)
.count();

blackhole.consume(count);



Stream + multiple filters



public void multipleFilters(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.filter(d -> d > Math.PI)
.filter(d -> d < Math.E)
.filter(d -> d != 3)
.filter(d -> d != 2)
.count();

blackhole.consume(count);



Parallel stream + complex filter



public void complexFilterParallel(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.parallel()
.filter(d -> d < Math.PI
&& d > Math.E
&& d != 3
&& d != 2)
.count();

blackhole.consume(count);



Parallel stream + multiple filters



public void multipleFiltersParallel(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.parallel()
.filter(d -> d > Math.PI)
.filter(d -> d < Math.E)
.filter(d -> d != 3)
.filter(d -> d != 2)
.count();

blackhole.consume(count);




Old fashion java iteration



public void oldFashionFilters(ExecutionPlan plan, Blackhole blackhole) 
long count = 0;
for (int i = 0; i < plan.getDoubles().size(); i++)
if (plan.getDoubles().get(i) > Math.PI
&& plan.getDoubles().get(i) > Math.E
&& plan.getDoubles().get(i) != 3
&& plan.getDoubles().get(i) != 2)
count = count + 1;



blackhole.consume(count);




You can try by yourself by running docker command:



For Java 8:




docker run -it volkodav/java-filter-benchmark:java8




For Java 12:




docker run -it volkodav/java-filter-benchmark:java12




Source code:



https://github.com/volkodavs/javafilters-benchmarks










share|improve this question
















As part of my investigation on the difference between using a complex filter or multiple filters in streams, I notice that performance on Java 12 is way slower than on Java 8.



Is any explanation for those weird results? Did I miss something here?



Configuration:




  • java 8



    • OpenJDK Runtime Environment (build 1.8.0_181-8u181-b13-2~deb9u1-b13)

    • OpenJDK 64-Bit Server VM (build 25.181-b13, mixed mode)



  • java 12



    • OpenJDK Runtime Environment (build 12+33)

    • OpenJDK 64-Bit Server VM (build 12+33, mixed mode, sharing)


  • VM options: -XX:+UseG1GC -server -Xmx1024m -Xms1024m


  • CPU: 8 cores

JMH Throughput Results:



  • Warmup: 10 iterations, 1 s each

  • Measurement: 10 iterations, 1 s each

  • Threads: 1 thread, will synchronize iterations

  • Units: ops/s

Comparison tables



Code



Stream + complex filter



public void complexFilter(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.filter(d -> d < Math.PI
&& d > Math.E
&& d != 3
&& d != 2)
.count();

blackhole.consume(count);



Stream + multiple filters



public void multipleFilters(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.filter(d -> d > Math.PI)
.filter(d -> d < Math.E)
.filter(d -> d != 3)
.filter(d -> d != 2)
.count();

blackhole.consume(count);



Parallel stream + complex filter



public void complexFilterParallel(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.parallel()
.filter(d -> d < Math.PI
&& d > Math.E
&& d != 3
&& d != 2)
.count();

blackhole.consume(count);



Parallel stream + multiple filters



public void multipleFiltersParallel(ExecutionPlan plan, Blackhole blackhole) 
long count = plan.getDoubles()
.stream()
.parallel()
.filter(d -> d > Math.PI)
.filter(d -> d < Math.E)
.filter(d -> d != 3)
.filter(d -> d != 2)
.count();

blackhole.consume(count);




Old fashion java iteration



public void oldFashionFilters(ExecutionPlan plan, Blackhole blackhole) 
long count = 0;
for (int i = 0; i < plan.getDoubles().size(); i++)
if (plan.getDoubles().get(i) > Math.PI
&& plan.getDoubles().get(i) > Math.E
&& plan.getDoubles().get(i) != 3
&& plan.getDoubles().get(i) != 2)
count = count + 1;



blackhole.consume(count);




You can try by yourself by running docker command:



For Java 8:




docker run -it volkodav/java-filter-benchmark:java8




For Java 12:




docker run -it volkodav/java-filter-benchmark:java12




Source code:



https://github.com/volkodavs/javafilters-benchmarks







java java-stream benchmarking jmh java-12






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 1 at 2:18









Peter Cordes

154k21 gold badges245 silver badges393 bronze badges




154k21 gold badges245 silver badges393 bronze badges










asked Mar 27 at 11:11









SergeSerge

1,0609 silver badges19 bronze badges




1,0609 silver badges19 bronze badges










  • 21





    What's the meaning of those numbers?

    – marstran
    Mar 27 at 11:13






  • 7





    Pretty sure -gc true in your configuration wrecks it up for jdk12. Forcing Full GC before each iteration is quite likely to throw off GC heuristics. Why do you have that option to begin with?

    – Aleksey Shipilev
    Mar 27 at 16:54







  • 8





    Also, why @Setup(Level.Invocation)? It seems your workload wants to collect all the pitfalls at once :)

    – Aleksey Shipilev
    Mar 27 at 17:11







  • 7





    The answer might be too complicated to fit the comment. The difference seems to be real, and there are weird inlining oddities in jdk12 case, as can be seen with -prof perfasm.

    – Aleksey Shipilev
    Mar 27 at 17:39







  • 12





    I now think there is a weird interaction between Full GC and concurrent compilations. -gc true is not recommended for lots of reasons, this might be a new one. Still digging...

    – Aleksey Shipilev
    Mar 27 at 17:55












  • 21





    What's the meaning of those numbers?

    – marstran
    Mar 27 at 11:13






  • 7





    Pretty sure -gc true in your configuration wrecks it up for jdk12. Forcing Full GC before each iteration is quite likely to throw off GC heuristics. Why do you have that option to begin with?

    – Aleksey Shipilev
    Mar 27 at 16:54







  • 8





    Also, why @Setup(Level.Invocation)? It seems your workload wants to collect all the pitfalls at once :)

    – Aleksey Shipilev
    Mar 27 at 17:11







  • 7





    The answer might be too complicated to fit the comment. The difference seems to be real, and there are weird inlining oddities in jdk12 case, as can be seen with -prof perfasm.

    – Aleksey Shipilev
    Mar 27 at 17:39







  • 12





    I now think there is a weird interaction between Full GC and concurrent compilations. -gc true is not recommended for lots of reasons, this might be a new one. Still digging...

    – Aleksey Shipilev
    Mar 27 at 17:55







21




21





What's the meaning of those numbers?

– marstran
Mar 27 at 11:13





What's the meaning of those numbers?

– marstran
Mar 27 at 11:13




7




7





Pretty sure -gc true in your configuration wrecks it up for jdk12. Forcing Full GC before each iteration is quite likely to throw off GC heuristics. Why do you have that option to begin with?

– Aleksey Shipilev
Mar 27 at 16:54






Pretty sure -gc true in your configuration wrecks it up for jdk12. Forcing Full GC before each iteration is quite likely to throw off GC heuristics. Why do you have that option to begin with?

– Aleksey Shipilev
Mar 27 at 16:54





8




8





Also, why @Setup(Level.Invocation)? It seems your workload wants to collect all the pitfalls at once :)

– Aleksey Shipilev
Mar 27 at 17:11






Also, why @Setup(Level.Invocation)? It seems your workload wants to collect all the pitfalls at once :)

– Aleksey Shipilev
Mar 27 at 17:11





7




7





The answer might be too complicated to fit the comment. The difference seems to be real, and there are weird inlining oddities in jdk12 case, as can be seen with -prof perfasm.

– Aleksey Shipilev
Mar 27 at 17:39






The answer might be too complicated to fit the comment. The difference seems to be real, and there are weird inlining oddities in jdk12 case, as can be seen with -prof perfasm.

– Aleksey Shipilev
Mar 27 at 17:39





12




12





I now think there is a weird interaction between Full GC and concurrent compilations. -gc true is not recommended for lots of reasons, this might be a new one. Still digging...

– Aleksey Shipilev
Mar 27 at 17:55





I now think there is a weird interaction between Full GC and concurrent compilations. -gc true is not recommended for lots of reasons, this might be a new one. Still digging...

– Aleksey Shipilev
Mar 27 at 17:55












1 Answer
1






active

oldest

votes


















23














Thanks, everyone for the help and especially to @Aleksey Shipilev!



After applied changes to JMH benchmark, the results look more realistic (?)



Changes:




  1. Change the setup method to be executed before/after each iteration of the benchmark.



    @Setup(Level.Invocation) -> @Setup(Level.Iteration)




  2. Stop JMH forcing GC between iterations. Forcing Full GC before each iteration is quite likely to throw off GC heuristics. (c) Aleksey Shipilev



    -gc true -> -gc false



Note: gc false by default.



Comparison tables



Based on new performance benchmarks there is no performance degradation on Java 12 compare to Java 8.



Note: After those changes, the throughput error for a small array size significantly increased for more than 100%, for a large dataset remain the same.



result table



Raw results



Java 8



# Run complete. Total time: 04:36:29

Benchmark (arraySize) Mode Cnt Score Error Units
FilterBenchmark.complexFilter 10 thrpt 50 5947577.648 ± 257535.736 ops/s
FilterBenchmark.complexFilter 100 thrpt 50 3131081.555 ± 72868.963 ops/s
FilterBenchmark.complexFilter 1000 thrpt 50 489666.688 ± 6539.466 ops/s
FilterBenchmark.complexFilter 10000 thrpt 50 17297.424 ± 93.890 ops/s
FilterBenchmark.complexFilter 100000 thrpt 50 1398.702 ± 72.820 ops/s
FilterBenchmark.complexFilter 1000000 thrpt 50 81.309 ± 0.547 ops/s
FilterBenchmark.complexFilterParallel 10 thrpt 50 24515.743 ± 450.363 ops/s
FilterBenchmark.complexFilterParallel 100 thrpt 50 25584.773 ± 290.249 ops/s
FilterBenchmark.complexFilterParallel 1000 thrpt 50 24313.066 ± 425.817 ops/s
FilterBenchmark.complexFilterParallel 10000 thrpt 50 11909.085 ± 51.534 ops/s
FilterBenchmark.complexFilterParallel 100000 thrpt 50 3260.864 ± 522.565 ops/s
FilterBenchmark.complexFilterParallel 1000000 thrpt 50 406.297 ± 96.590 ops/s
FilterBenchmark.multipleFilters 10 thrpt 50 3785766.911 ± 27971.998 ops/s
FilterBenchmark.multipleFilters 100 thrpt 50 1806210.041 ± 11578.529 ops/s
FilterBenchmark.multipleFilters 1000 thrpt 50 211435.445 ± 28585.969 ops/s
FilterBenchmark.multipleFilters 10000 thrpt 50 12614.670 ± 370.086 ops/s
FilterBenchmark.multipleFilters 100000 thrpt 50 1228.127 ± 21.208 ops/s
FilterBenchmark.multipleFilters 1000000 thrpt 50 99.149 ± 1.370 ops/s
FilterBenchmark.multipleFiltersParallel 10 thrpt 50 23896.812 ± 255.117 ops/s
FilterBenchmark.multipleFiltersParallel 100 thrpt 50 25314.613 ± 169.724 ops/s
FilterBenchmark.multipleFiltersParallel 1000 thrpt 50 23113.388 ± 305.605 ops/s
FilterBenchmark.multipleFiltersParallel 10000 thrpt 50 12676.057 ± 119.555 ops/s
FilterBenchmark.multipleFiltersParallel 100000 thrpt 50 3373.367 ± 211.108 ops/s
FilterBenchmark.multipleFiltersParallel 1000000 thrpt 50 477.870 ± 70.878 ops/s
FilterBenchmark.oldFashionFilters 10 thrpt 50 45874144.758 ± 2210325.177 ops/s
FilterBenchmark.oldFashionFilters 100 thrpt 50 4902625.828 ± 60397.844 ops/s
FilterBenchmark.oldFashionFilters 1000 thrpt 50 662102.438 ± 5038.465 ops/s
FilterBenchmark.oldFashionFilters 10000 thrpt 50 29390.911 ± 257.311 ops/s
FilterBenchmark.oldFashionFilters 100000 thrpt 50 1999.032 ± 6.829 ops/s
FilterBenchmark.oldFashionFilters 1000000 thrpt 50 200.564 ± 1.695 ops/s


Java 12



# Run complete. Total time: 04:36:20

Benchmark (arraySize) Mode Cnt Score Error Units
FilterBenchmark.complexFilter 10 thrpt 50 10338525.553 ? 1677693.433 ops/s
FilterBenchmark.complexFilter 100 thrpt 50 4381301.188 ? 287299.598 ops/s
FilterBenchmark.complexFilter 1000 thrpt 50 607572.430 ? 9367.026 ops/s
FilterBenchmark.complexFilter 10000 thrpt 50 30643.286 ? 472.033 ops/s
FilterBenchmark.complexFilter 100000 thrpt 50 1450.341 ? 3.730 ops/s
FilterBenchmark.complexFilter 1000000 thrpt 50 138.996 ? 2.052 ops/s
FilterBenchmark.complexFilterParallel 10 thrpt 50 21289.444 ? 183.245 ops/s
FilterBenchmark.complexFilterParallel 100 thrpt 50 20105.239 ? 124.759 ops/s
FilterBenchmark.complexFilterParallel 1000 thrpt 50 19418.830 ? 141.664 ops/s
FilterBenchmark.complexFilterParallel 10000 thrpt 50 13874.585 ? 104.418 ops/s
FilterBenchmark.complexFilterParallel 100000 thrpt 50 5334.947 ? 25.452 ops/s
FilterBenchmark.complexFilterParallel 1000000 thrpt 50 781.046 ? 9.687 ops/s
FilterBenchmark.multipleFilters 10 thrpt 50 5460308.048 ? 478157.935 ops/s
FilterBenchmark.multipleFilters 100 thrpt 50 2227583.836 ? 113078.932 ops/s
FilterBenchmark.multipleFilters 1000 thrpt 50 287157.190 ? 1114.346 ops/s
FilterBenchmark.multipleFilters 10000 thrpt 50 16268.016 ? 704.735 ops/s
FilterBenchmark.multipleFilters 100000 thrpt 50 1531.516 ? 2.729 ops/s
FilterBenchmark.multipleFilters 1000000 thrpt 50 123.881 ? 1.525 ops/s
FilterBenchmark.multipleFiltersParallel 10 thrpt 50 20403.993 ? 147.247 ops/s
FilterBenchmark.multipleFiltersParallel 100 thrpt 50 19426.222 ? 96.979 ops/s
FilterBenchmark.multipleFiltersParallel 1000 thrpt 50 17692.433 ? 67.606 ops/s
FilterBenchmark.multipleFiltersParallel 10000 thrpt 50 12108.482 ? 34.500 ops/s
FilterBenchmark.multipleFiltersParallel 100000 thrpt 50 3782.756 ? 22.044 ops/s
FilterBenchmark.multipleFiltersParallel 1000000 thrpt 50 589.972 ? 71.448 ops/s
FilterBenchmark.oldFashionFilters 10 thrpt 50 41024334.062 ? 1374663.440 ops/s
FilterBenchmark.oldFashionFilters 100 thrpt 50 6011852.027 ? 246202.642 ops/s
FilterBenchmark.oldFashionFilters 1000 thrpt 50 553243.594 ? 2217.912 ops/s
FilterBenchmark.oldFashionFilters 10000 thrpt 50 29188.753 ? 580.958 ops/s
FilterBenchmark.oldFashionFilters 100000 thrpt 50 2061.738 ? 8.456 ops/s
FilterBenchmark.oldFashionFilters 1000000 thrpt 50 196.105 ? 3.203 ops/s





share|improve this answer




















  • 3





    the Invocation -> Iteration was obvious, gc is not; IMO this does not answer the question. I hope Alexey will present his findings

    – Eugene
    Mar 28 at 14:07






  • 1





    Yep, I agree with you @Eugene, I have already asked Alexey for an explanation in the comments. I hope he will find time to give more information around it

    – Serge
    Mar 28 at 14:21











  • Can you explain what’s obvious about it? I mean it’s still a regression? Since this is with less warmup, does it mean 12 takes longer for that? (But then it should be still warmed up?)

    – eckes
    Apr 3 at 4:00










Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55375803%2fmystifying-microbenchmark-result-for-stream-api-on-java-12-vs-java-8-with-gc-t%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









23














Thanks, everyone for the help and especially to @Aleksey Shipilev!



After applied changes to JMH benchmark, the results look more realistic (?)



Changes:




  1. Change the setup method to be executed before/after each iteration of the benchmark.



    @Setup(Level.Invocation) -> @Setup(Level.Iteration)




  2. Stop JMH forcing GC between iterations. Forcing Full GC before each iteration is quite likely to throw off GC heuristics. (c) Aleksey Shipilev



    -gc true -> -gc false



Note: gc false by default.



Comparison tables



Based on new performance benchmarks there is no performance degradation on Java 12 compare to Java 8.



Note: After those changes, the throughput error for a small array size significantly increased for more than 100%, for a large dataset remain the same.



result table



Raw results



Java 8



# Run complete. Total time: 04:36:29

Benchmark (arraySize) Mode Cnt Score Error Units
FilterBenchmark.complexFilter 10 thrpt 50 5947577.648 ± 257535.736 ops/s
FilterBenchmark.complexFilter 100 thrpt 50 3131081.555 ± 72868.963 ops/s
FilterBenchmark.complexFilter 1000 thrpt 50 489666.688 ± 6539.466 ops/s
FilterBenchmark.complexFilter 10000 thrpt 50 17297.424 ± 93.890 ops/s
FilterBenchmark.complexFilter 100000 thrpt 50 1398.702 ± 72.820 ops/s
FilterBenchmark.complexFilter 1000000 thrpt 50 81.309 ± 0.547 ops/s
FilterBenchmark.complexFilterParallel 10 thrpt 50 24515.743 ± 450.363 ops/s
FilterBenchmark.complexFilterParallel 100 thrpt 50 25584.773 ± 290.249 ops/s
FilterBenchmark.complexFilterParallel 1000 thrpt 50 24313.066 ± 425.817 ops/s
FilterBenchmark.complexFilterParallel 10000 thrpt 50 11909.085 ± 51.534 ops/s
FilterBenchmark.complexFilterParallel 100000 thrpt 50 3260.864 ± 522.565 ops/s
FilterBenchmark.complexFilterParallel 1000000 thrpt 50 406.297 ± 96.590 ops/s
FilterBenchmark.multipleFilters 10 thrpt 50 3785766.911 ± 27971.998 ops/s
FilterBenchmark.multipleFilters 100 thrpt 50 1806210.041 ± 11578.529 ops/s
FilterBenchmark.multipleFilters 1000 thrpt 50 211435.445 ± 28585.969 ops/s
FilterBenchmark.multipleFilters 10000 thrpt 50 12614.670 ± 370.086 ops/s
FilterBenchmark.multipleFilters 100000 thrpt 50 1228.127 ± 21.208 ops/s
FilterBenchmark.multipleFilters 1000000 thrpt 50 99.149 ± 1.370 ops/s
FilterBenchmark.multipleFiltersParallel 10 thrpt 50 23896.812 ± 255.117 ops/s
FilterBenchmark.multipleFiltersParallel 100 thrpt 50 25314.613 ± 169.724 ops/s
FilterBenchmark.multipleFiltersParallel 1000 thrpt 50 23113.388 ± 305.605 ops/s
FilterBenchmark.multipleFiltersParallel 10000 thrpt 50 12676.057 ± 119.555 ops/s
FilterBenchmark.multipleFiltersParallel 100000 thrpt 50 3373.367 ± 211.108 ops/s
FilterBenchmark.multipleFiltersParallel 1000000 thrpt 50 477.870 ± 70.878 ops/s
FilterBenchmark.oldFashionFilters 10 thrpt 50 45874144.758 ± 2210325.177 ops/s
FilterBenchmark.oldFashionFilters 100 thrpt 50 4902625.828 ± 60397.844 ops/s
FilterBenchmark.oldFashionFilters 1000 thrpt 50 662102.438 ± 5038.465 ops/s
FilterBenchmark.oldFashionFilters 10000 thrpt 50 29390.911 ± 257.311 ops/s
FilterBenchmark.oldFashionFilters 100000 thrpt 50 1999.032 ± 6.829 ops/s
FilterBenchmark.oldFashionFilters 1000000 thrpt 50 200.564 ± 1.695 ops/s


Java 12



# Run complete. Total time: 04:36:20

Benchmark (arraySize) Mode Cnt Score Error Units
FilterBenchmark.complexFilter 10 thrpt 50 10338525.553 ? 1677693.433 ops/s
FilterBenchmark.complexFilter 100 thrpt 50 4381301.188 ? 287299.598 ops/s
FilterBenchmark.complexFilter 1000 thrpt 50 607572.430 ? 9367.026 ops/s
FilterBenchmark.complexFilter 10000 thrpt 50 30643.286 ? 472.033 ops/s
FilterBenchmark.complexFilter 100000 thrpt 50 1450.341 ? 3.730 ops/s
FilterBenchmark.complexFilter 1000000 thrpt 50 138.996 ? 2.052 ops/s
FilterBenchmark.complexFilterParallel 10 thrpt 50 21289.444 ? 183.245 ops/s
FilterBenchmark.complexFilterParallel 100 thrpt 50 20105.239 ? 124.759 ops/s
FilterBenchmark.complexFilterParallel 1000 thrpt 50 19418.830 ? 141.664 ops/s
FilterBenchmark.complexFilterParallel 10000 thrpt 50 13874.585 ? 104.418 ops/s
FilterBenchmark.complexFilterParallel 100000 thrpt 50 5334.947 ? 25.452 ops/s
FilterBenchmark.complexFilterParallel 1000000 thrpt 50 781.046 ? 9.687 ops/s
FilterBenchmark.multipleFilters 10 thrpt 50 5460308.048 ? 478157.935 ops/s
FilterBenchmark.multipleFilters 100 thrpt 50 2227583.836 ? 113078.932 ops/s
FilterBenchmark.multipleFilters 1000 thrpt 50 287157.190 ? 1114.346 ops/s
FilterBenchmark.multipleFilters 10000 thrpt 50 16268.016 ? 704.735 ops/s
FilterBenchmark.multipleFilters 100000 thrpt 50 1531.516 ? 2.729 ops/s
FilterBenchmark.multipleFilters 1000000 thrpt 50 123.881 ? 1.525 ops/s
FilterBenchmark.multipleFiltersParallel 10 thrpt 50 20403.993 ? 147.247 ops/s
FilterBenchmark.multipleFiltersParallel 100 thrpt 50 19426.222 ? 96.979 ops/s
FilterBenchmark.multipleFiltersParallel 1000 thrpt 50 17692.433 ? 67.606 ops/s
FilterBenchmark.multipleFiltersParallel 10000 thrpt 50 12108.482 ? 34.500 ops/s
FilterBenchmark.multipleFiltersParallel 100000 thrpt 50 3782.756 ? 22.044 ops/s
FilterBenchmark.multipleFiltersParallel 1000000 thrpt 50 589.972 ? 71.448 ops/s
FilterBenchmark.oldFashionFilters 10 thrpt 50 41024334.062 ? 1374663.440 ops/s
FilterBenchmark.oldFashionFilters 100 thrpt 50 6011852.027 ? 246202.642 ops/s
FilterBenchmark.oldFashionFilters 1000 thrpt 50 553243.594 ? 2217.912 ops/s
FilterBenchmark.oldFashionFilters 10000 thrpt 50 29188.753 ? 580.958 ops/s
FilterBenchmark.oldFashionFilters 100000 thrpt 50 2061.738 ? 8.456 ops/s
FilterBenchmark.oldFashionFilters 1000000 thrpt 50 196.105 ? 3.203 ops/s





share|improve this answer




















  • 3





    the Invocation -> Iteration was obvious, gc is not; IMO this does not answer the question. I hope Alexey will present his findings

    – Eugene
    Mar 28 at 14:07






  • 1





    Yep, I agree with you @Eugene, I have already asked Alexey for an explanation in the comments. I hope he will find time to give more information around it

    – Serge
    Mar 28 at 14:21











  • Can you explain what’s obvious about it? I mean it’s still a regression? Since this is with less warmup, does it mean 12 takes longer for that? (But then it should be still warmed up?)

    – eckes
    Apr 3 at 4:00















23














Thanks, everyone for the help and especially to @Aleksey Shipilev!



After applied changes to JMH benchmark, the results look more realistic (?)



Changes:




  1. Change the setup method to be executed before/after each iteration of the benchmark.



    @Setup(Level.Invocation) -> @Setup(Level.Iteration)




  2. Stop JMH forcing GC between iterations. Forcing Full GC before each iteration is quite likely to throw off GC heuristics. (c) Aleksey Shipilev



    -gc true -> -gc false



Note: gc false by default.



Comparison tables



Based on new performance benchmarks there is no performance degradation on Java 12 compare to Java 8.



Note: After those changes, the throughput error for a small array size significantly increased for more than 100%, for a large dataset remain the same.



result table



Raw results



Java 8



# Run complete. Total time: 04:36:29

Benchmark (arraySize) Mode Cnt Score Error Units
FilterBenchmark.complexFilter 10 thrpt 50 5947577.648 ± 257535.736 ops/s
FilterBenchmark.complexFilter 100 thrpt 50 3131081.555 ± 72868.963 ops/s
FilterBenchmark.complexFilter 1000 thrpt 50 489666.688 ± 6539.466 ops/s
FilterBenchmark.complexFilter 10000 thrpt 50 17297.424 ± 93.890 ops/s
FilterBenchmark.complexFilter 100000 thrpt 50 1398.702 ± 72.820 ops/s
FilterBenchmark.complexFilter 1000000 thrpt 50 81.309 ± 0.547 ops/s
FilterBenchmark.complexFilterParallel 10 thrpt 50 24515.743 ± 450.363 ops/s
FilterBenchmark.complexFilterParallel 100 thrpt 50 25584.773 ± 290.249 ops/s
FilterBenchmark.complexFilterParallel 1000 thrpt 50 24313.066 ± 425.817 ops/s
FilterBenchmark.complexFilterParallel 10000 thrpt 50 11909.085 ± 51.534 ops/s
FilterBenchmark.complexFilterParallel 100000 thrpt 50 3260.864 ± 522.565 ops/s
FilterBenchmark.complexFilterParallel 1000000 thrpt 50 406.297 ± 96.590 ops/s
FilterBenchmark.multipleFilters 10 thrpt 50 3785766.911 ± 27971.998 ops/s
FilterBenchmark.multipleFilters 100 thrpt 50 1806210.041 ± 11578.529 ops/s
FilterBenchmark.multipleFilters 1000 thrpt 50 211435.445 ± 28585.969 ops/s
FilterBenchmark.multipleFilters 10000 thrpt 50 12614.670 ± 370.086 ops/s
FilterBenchmark.multipleFilters 100000 thrpt 50 1228.127 ± 21.208 ops/s
FilterBenchmark.multipleFilters 1000000 thrpt 50 99.149 ± 1.370 ops/s
FilterBenchmark.multipleFiltersParallel 10 thrpt 50 23896.812 ± 255.117 ops/s
FilterBenchmark.multipleFiltersParallel 100 thrpt 50 25314.613 ± 169.724 ops/s
FilterBenchmark.multipleFiltersParallel 1000 thrpt 50 23113.388 ± 305.605 ops/s
FilterBenchmark.multipleFiltersParallel 10000 thrpt 50 12676.057 ± 119.555 ops/s
FilterBenchmark.multipleFiltersParallel 100000 thrpt 50 3373.367 ± 211.108 ops/s
FilterBenchmark.multipleFiltersParallel 1000000 thrpt 50 477.870 ± 70.878 ops/s
FilterBenchmark.oldFashionFilters 10 thrpt 50 45874144.758 ± 2210325.177 ops/s
FilterBenchmark.oldFashionFilters 100 thrpt 50 4902625.828 ± 60397.844 ops/s
FilterBenchmark.oldFashionFilters 1000 thrpt 50 662102.438 ± 5038.465 ops/s
FilterBenchmark.oldFashionFilters 10000 thrpt 50 29390.911 ± 257.311 ops/s
FilterBenchmark.oldFashionFilters 100000 thrpt 50 1999.032 ± 6.829 ops/s
FilterBenchmark.oldFashionFilters 1000000 thrpt 50 200.564 ± 1.695 ops/s


Java 12



# Run complete. Total time: 04:36:20

Benchmark (arraySize) Mode Cnt Score Error Units
FilterBenchmark.complexFilter 10 thrpt 50 10338525.553 ? 1677693.433 ops/s
FilterBenchmark.complexFilter 100 thrpt 50 4381301.188 ? 287299.598 ops/s
FilterBenchmark.complexFilter 1000 thrpt 50 607572.430 ? 9367.026 ops/s
FilterBenchmark.complexFilter 10000 thrpt 50 30643.286 ? 472.033 ops/s
FilterBenchmark.complexFilter 100000 thrpt 50 1450.341 ? 3.730 ops/s
FilterBenchmark.complexFilter 1000000 thrpt 50 138.996 ? 2.052 ops/s
FilterBenchmark.complexFilterParallel 10 thrpt 50 21289.444 ? 183.245 ops/s
FilterBenchmark.complexFilterParallel 100 thrpt 50 20105.239 ? 124.759 ops/s
FilterBenchmark.complexFilterParallel 1000 thrpt 50 19418.830 ? 141.664 ops/s
FilterBenchmark.complexFilterParallel 10000 thrpt 50 13874.585 ? 104.418 ops/s
FilterBenchmark.complexFilterParallel 100000 thrpt 50 5334.947 ? 25.452 ops/s
FilterBenchmark.complexFilterParallel 1000000 thrpt 50 781.046 ? 9.687 ops/s
FilterBenchmark.multipleFilters 10 thrpt 50 5460308.048 ? 478157.935 ops/s
FilterBenchmark.multipleFilters 100 thrpt 50 2227583.836 ? 113078.932 ops/s
FilterBenchmark.multipleFilters 1000 thrpt 50 287157.190 ? 1114.346 ops/s
FilterBenchmark.multipleFilters 10000 thrpt 50 16268.016 ? 704.735 ops/s
FilterBenchmark.multipleFilters 100000 thrpt 50 1531.516 ? 2.729 ops/s
FilterBenchmark.multipleFilters 1000000 thrpt 50 123.881 ? 1.525 ops/s
FilterBenchmark.multipleFiltersParallel 10 thrpt 50 20403.993 ? 147.247 ops/s
FilterBenchmark.multipleFiltersParallel 100 thrpt 50 19426.222 ? 96.979 ops/s
FilterBenchmark.multipleFiltersParallel 1000 thrpt 50 17692.433 ? 67.606 ops/s
FilterBenchmark.multipleFiltersParallel 10000 thrpt 50 12108.482 ? 34.500 ops/s
FilterBenchmark.multipleFiltersParallel 100000 thrpt 50 3782.756 ? 22.044 ops/s
FilterBenchmark.multipleFiltersParallel 1000000 thrpt 50 589.972 ? 71.448 ops/s
FilterBenchmark.oldFashionFilters 10 thrpt 50 41024334.062 ? 1374663.440 ops/s
FilterBenchmark.oldFashionFilters 100 thrpt 50 6011852.027 ? 246202.642 ops/s
FilterBenchmark.oldFashionFilters 1000 thrpt 50 553243.594 ? 2217.912 ops/s
FilterBenchmark.oldFashionFilters 10000 thrpt 50 29188.753 ? 580.958 ops/s
FilterBenchmark.oldFashionFilters 100000 thrpt 50 2061.738 ? 8.456 ops/s
FilterBenchmark.oldFashionFilters 1000000 thrpt 50 196.105 ? 3.203 ops/s





share|improve this answer




















  • 3





    the Invocation -> Iteration was obvious, gc is not; IMO this does not answer the question. I hope Alexey will present his findings

    – Eugene
    Mar 28 at 14:07






  • 1





    Yep, I agree with you @Eugene, I have already asked Alexey for an explanation in the comments. I hope he will find time to give more information around it

    – Serge
    Mar 28 at 14:21











  • Can you explain what’s obvious about it? I mean it’s still a regression? Since this is with less warmup, does it mean 12 takes longer for that? (But then it should be still warmed up?)

    – eckes
    Apr 3 at 4:00













23












23








23







Thanks, everyone for the help and especially to @Aleksey Shipilev!



After applied changes to JMH benchmark, the results look more realistic (?)



Changes:




  1. Change the setup method to be executed before/after each iteration of the benchmark.



    @Setup(Level.Invocation) -> @Setup(Level.Iteration)




  2. Stop JMH forcing GC between iterations. Forcing Full GC before each iteration is quite likely to throw off GC heuristics. (c) Aleksey Shipilev



    -gc true -> -gc false



Note: gc false by default.



Comparison tables



Based on new performance benchmarks there is no performance degradation on Java 12 compare to Java 8.



Note: After those changes, the throughput error for a small array size significantly increased for more than 100%, for a large dataset remain the same.



result table



Raw results



Java 8



# Run complete. Total time: 04:36:29

Benchmark (arraySize) Mode Cnt Score Error Units
FilterBenchmark.complexFilter 10 thrpt 50 5947577.648 ± 257535.736 ops/s
FilterBenchmark.complexFilter 100 thrpt 50 3131081.555 ± 72868.963 ops/s
FilterBenchmark.complexFilter 1000 thrpt 50 489666.688 ± 6539.466 ops/s
FilterBenchmark.complexFilter 10000 thrpt 50 17297.424 ± 93.890 ops/s
FilterBenchmark.complexFilter 100000 thrpt 50 1398.702 ± 72.820 ops/s
FilterBenchmark.complexFilter 1000000 thrpt 50 81.309 ± 0.547 ops/s
FilterBenchmark.complexFilterParallel 10 thrpt 50 24515.743 ± 450.363 ops/s
FilterBenchmark.complexFilterParallel 100 thrpt 50 25584.773 ± 290.249 ops/s
FilterBenchmark.complexFilterParallel 1000 thrpt 50 24313.066 ± 425.817 ops/s
FilterBenchmark.complexFilterParallel 10000 thrpt 50 11909.085 ± 51.534 ops/s
FilterBenchmark.complexFilterParallel 100000 thrpt 50 3260.864 ± 522.565 ops/s
FilterBenchmark.complexFilterParallel 1000000 thrpt 50 406.297 ± 96.590 ops/s
FilterBenchmark.multipleFilters 10 thrpt 50 3785766.911 ± 27971.998 ops/s
FilterBenchmark.multipleFilters 100 thrpt 50 1806210.041 ± 11578.529 ops/s
FilterBenchmark.multipleFilters 1000 thrpt 50 211435.445 ± 28585.969 ops/s
FilterBenchmark.multipleFilters 10000 thrpt 50 12614.670 ± 370.086 ops/s
FilterBenchmark.multipleFilters 100000 thrpt 50 1228.127 ± 21.208 ops/s
FilterBenchmark.multipleFilters 1000000 thrpt 50 99.149 ± 1.370 ops/s
FilterBenchmark.multipleFiltersParallel 10 thrpt 50 23896.812 ± 255.117 ops/s
FilterBenchmark.multipleFiltersParallel 100 thrpt 50 25314.613 ± 169.724 ops/s
FilterBenchmark.multipleFiltersParallel 1000 thrpt 50 23113.388 ± 305.605 ops/s
FilterBenchmark.multipleFiltersParallel 10000 thrpt 50 12676.057 ± 119.555 ops/s
FilterBenchmark.multipleFiltersParallel 100000 thrpt 50 3373.367 ± 211.108 ops/s
FilterBenchmark.multipleFiltersParallel 1000000 thrpt 50 477.870 ± 70.878 ops/s
FilterBenchmark.oldFashionFilters 10 thrpt 50 45874144.758 ± 2210325.177 ops/s
FilterBenchmark.oldFashionFilters 100 thrpt 50 4902625.828 ± 60397.844 ops/s
FilterBenchmark.oldFashionFilters 1000 thrpt 50 662102.438 ± 5038.465 ops/s
FilterBenchmark.oldFashionFilters 10000 thrpt 50 29390.911 ± 257.311 ops/s
FilterBenchmark.oldFashionFilters 100000 thrpt 50 1999.032 ± 6.829 ops/s
FilterBenchmark.oldFashionFilters 1000000 thrpt 50 200.564 ± 1.695 ops/s


Java 12



# Run complete. Total time: 04:36:20

Benchmark (arraySize) Mode Cnt Score Error Units
FilterBenchmark.complexFilter 10 thrpt 50 10338525.553 ? 1677693.433 ops/s
FilterBenchmark.complexFilter 100 thrpt 50 4381301.188 ? 287299.598 ops/s
FilterBenchmark.complexFilter 1000 thrpt 50 607572.430 ? 9367.026 ops/s
FilterBenchmark.complexFilter 10000 thrpt 50 30643.286 ? 472.033 ops/s
FilterBenchmark.complexFilter 100000 thrpt 50 1450.341 ? 3.730 ops/s
FilterBenchmark.complexFilter 1000000 thrpt 50 138.996 ? 2.052 ops/s
FilterBenchmark.complexFilterParallel 10 thrpt 50 21289.444 ? 183.245 ops/s
FilterBenchmark.complexFilterParallel 100 thrpt 50 20105.239 ? 124.759 ops/s
FilterBenchmark.complexFilterParallel 1000 thrpt 50 19418.830 ? 141.664 ops/s
FilterBenchmark.complexFilterParallel 10000 thrpt 50 13874.585 ? 104.418 ops/s
FilterBenchmark.complexFilterParallel 100000 thrpt 50 5334.947 ? 25.452 ops/s
FilterBenchmark.complexFilterParallel 1000000 thrpt 50 781.046 ? 9.687 ops/s
FilterBenchmark.multipleFilters 10 thrpt 50 5460308.048 ? 478157.935 ops/s
FilterBenchmark.multipleFilters 100 thrpt 50 2227583.836 ? 113078.932 ops/s
FilterBenchmark.multipleFilters 1000 thrpt 50 287157.190 ? 1114.346 ops/s
FilterBenchmark.multipleFilters 10000 thrpt 50 16268.016 ? 704.735 ops/s
FilterBenchmark.multipleFilters 100000 thrpt 50 1531.516 ? 2.729 ops/s
FilterBenchmark.multipleFilters 1000000 thrpt 50 123.881 ? 1.525 ops/s
FilterBenchmark.multipleFiltersParallel 10 thrpt 50 20403.993 ? 147.247 ops/s
FilterBenchmark.multipleFiltersParallel 100 thrpt 50 19426.222 ? 96.979 ops/s
FilterBenchmark.multipleFiltersParallel 1000 thrpt 50 17692.433 ? 67.606 ops/s
FilterBenchmark.multipleFiltersParallel 10000 thrpt 50 12108.482 ? 34.500 ops/s
FilterBenchmark.multipleFiltersParallel 100000 thrpt 50 3782.756 ? 22.044 ops/s
FilterBenchmark.multipleFiltersParallel 1000000 thrpt 50 589.972 ? 71.448 ops/s
FilterBenchmark.oldFashionFilters 10 thrpt 50 41024334.062 ? 1374663.440 ops/s
FilterBenchmark.oldFashionFilters 100 thrpt 50 6011852.027 ? 246202.642 ops/s
FilterBenchmark.oldFashionFilters 1000 thrpt 50 553243.594 ? 2217.912 ops/s
FilterBenchmark.oldFashionFilters 10000 thrpt 50 29188.753 ? 580.958 ops/s
FilterBenchmark.oldFashionFilters 100000 thrpt 50 2061.738 ? 8.456 ops/s
FilterBenchmark.oldFashionFilters 1000000 thrpt 50 196.105 ? 3.203 ops/s





share|improve this answer













Thanks, everyone for the help and especially to @Aleksey Shipilev!



After applied changes to JMH benchmark, the results look more realistic (?)



Changes:




  1. Change the setup method to be executed before/after each iteration of the benchmark.



    @Setup(Level.Invocation) -> @Setup(Level.Iteration)




  2. Stop JMH forcing GC between iterations. Forcing Full GC before each iteration is quite likely to throw off GC heuristics. (c) Aleksey Shipilev



    -gc true -> -gc false



Note: gc false by default.



Comparison tables



Based on new performance benchmarks there is no performance degradation on Java 12 compare to Java 8.



Note: After those changes, the throughput error for a small array size significantly increased for more than 100%, for a large dataset remain the same.



result table



Raw results



Java 8



# Run complete. Total time: 04:36:29

Benchmark (arraySize) Mode Cnt Score Error Units
FilterBenchmark.complexFilter 10 thrpt 50 5947577.648 ± 257535.736 ops/s
FilterBenchmark.complexFilter 100 thrpt 50 3131081.555 ± 72868.963 ops/s
FilterBenchmark.complexFilter 1000 thrpt 50 489666.688 ± 6539.466 ops/s
FilterBenchmark.complexFilter 10000 thrpt 50 17297.424 ± 93.890 ops/s
FilterBenchmark.complexFilter 100000 thrpt 50 1398.702 ± 72.820 ops/s
FilterBenchmark.complexFilter 1000000 thrpt 50 81.309 ± 0.547 ops/s
FilterBenchmark.complexFilterParallel 10 thrpt 50 24515.743 ± 450.363 ops/s
FilterBenchmark.complexFilterParallel 100 thrpt 50 25584.773 ± 290.249 ops/s
FilterBenchmark.complexFilterParallel 1000 thrpt 50 24313.066 ± 425.817 ops/s
FilterBenchmark.complexFilterParallel 10000 thrpt 50 11909.085 ± 51.534 ops/s
FilterBenchmark.complexFilterParallel 100000 thrpt 50 3260.864 ± 522.565 ops/s
FilterBenchmark.complexFilterParallel 1000000 thrpt 50 406.297 ± 96.590 ops/s
FilterBenchmark.multipleFilters 10 thrpt 50 3785766.911 ± 27971.998 ops/s
FilterBenchmark.multipleFilters 100 thrpt 50 1806210.041 ± 11578.529 ops/s
FilterBenchmark.multipleFilters 1000 thrpt 50 211435.445 ± 28585.969 ops/s
FilterBenchmark.multipleFilters 10000 thrpt 50 12614.670 ± 370.086 ops/s
FilterBenchmark.multipleFilters 100000 thrpt 50 1228.127 ± 21.208 ops/s
FilterBenchmark.multipleFilters 1000000 thrpt 50 99.149 ± 1.370 ops/s
FilterBenchmark.multipleFiltersParallel 10 thrpt 50 23896.812 ± 255.117 ops/s
FilterBenchmark.multipleFiltersParallel 100 thrpt 50 25314.613 ± 169.724 ops/s
FilterBenchmark.multipleFiltersParallel 1000 thrpt 50 23113.388 ± 305.605 ops/s
FilterBenchmark.multipleFiltersParallel 10000 thrpt 50 12676.057 ± 119.555 ops/s
FilterBenchmark.multipleFiltersParallel 100000 thrpt 50 3373.367 ± 211.108 ops/s
FilterBenchmark.multipleFiltersParallel 1000000 thrpt 50 477.870 ± 70.878 ops/s
FilterBenchmark.oldFashionFilters 10 thrpt 50 45874144.758 ± 2210325.177 ops/s
FilterBenchmark.oldFashionFilters 100 thrpt 50 4902625.828 ± 60397.844 ops/s
FilterBenchmark.oldFashionFilters 1000 thrpt 50 662102.438 ± 5038.465 ops/s
FilterBenchmark.oldFashionFilters 10000 thrpt 50 29390.911 ± 257.311 ops/s
FilterBenchmark.oldFashionFilters 100000 thrpt 50 1999.032 ± 6.829 ops/s
FilterBenchmark.oldFashionFilters 1000000 thrpt 50 200.564 ± 1.695 ops/s


Java 12



# Run complete. Total time: 04:36:20

Benchmark (arraySize) Mode Cnt Score Error Units
FilterBenchmark.complexFilter 10 thrpt 50 10338525.553 ? 1677693.433 ops/s
FilterBenchmark.complexFilter 100 thrpt 50 4381301.188 ? 287299.598 ops/s
FilterBenchmark.complexFilter 1000 thrpt 50 607572.430 ? 9367.026 ops/s
FilterBenchmark.complexFilter 10000 thrpt 50 30643.286 ? 472.033 ops/s
FilterBenchmark.complexFilter 100000 thrpt 50 1450.341 ? 3.730 ops/s
FilterBenchmark.complexFilter 1000000 thrpt 50 138.996 ? 2.052 ops/s
FilterBenchmark.complexFilterParallel 10 thrpt 50 21289.444 ? 183.245 ops/s
FilterBenchmark.complexFilterParallel 100 thrpt 50 20105.239 ? 124.759 ops/s
FilterBenchmark.complexFilterParallel 1000 thrpt 50 19418.830 ? 141.664 ops/s
FilterBenchmark.complexFilterParallel 10000 thrpt 50 13874.585 ? 104.418 ops/s
FilterBenchmark.complexFilterParallel 100000 thrpt 50 5334.947 ? 25.452 ops/s
FilterBenchmark.complexFilterParallel 1000000 thrpt 50 781.046 ? 9.687 ops/s
FilterBenchmark.multipleFilters 10 thrpt 50 5460308.048 ? 478157.935 ops/s
FilterBenchmark.multipleFilters 100 thrpt 50 2227583.836 ? 113078.932 ops/s
FilterBenchmark.multipleFilters 1000 thrpt 50 287157.190 ? 1114.346 ops/s
FilterBenchmark.multipleFilters 10000 thrpt 50 16268.016 ? 704.735 ops/s
FilterBenchmark.multipleFilters 100000 thrpt 50 1531.516 ? 2.729 ops/s
FilterBenchmark.multipleFilters 1000000 thrpt 50 123.881 ? 1.525 ops/s
FilterBenchmark.multipleFiltersParallel 10 thrpt 50 20403.993 ? 147.247 ops/s
FilterBenchmark.multipleFiltersParallel 100 thrpt 50 19426.222 ? 96.979 ops/s
FilterBenchmark.multipleFiltersParallel 1000 thrpt 50 17692.433 ? 67.606 ops/s
FilterBenchmark.multipleFiltersParallel 10000 thrpt 50 12108.482 ? 34.500 ops/s
FilterBenchmark.multipleFiltersParallel 100000 thrpt 50 3782.756 ? 22.044 ops/s
FilterBenchmark.multipleFiltersParallel 1000000 thrpt 50 589.972 ? 71.448 ops/s
FilterBenchmark.oldFashionFilters 10 thrpt 50 41024334.062 ? 1374663.440 ops/s
FilterBenchmark.oldFashionFilters 100 thrpt 50 6011852.027 ? 246202.642 ops/s
FilterBenchmark.oldFashionFilters 1000 thrpt 50 553243.594 ? 2217.912 ops/s
FilterBenchmark.oldFashionFilters 10000 thrpt 50 29188.753 ? 580.958 ops/s
FilterBenchmark.oldFashionFilters 100000 thrpt 50 2061.738 ? 8.456 ops/s
FilterBenchmark.oldFashionFilters 1000000 thrpt 50 196.105 ? 3.203 ops/s






share|improve this answer












share|improve this answer



share|improve this answer










answered Mar 28 at 11:15









SergeSerge

1,0609 silver badges19 bronze badges




1,0609 silver badges19 bronze badges










  • 3





    the Invocation -> Iteration was obvious, gc is not; IMO this does not answer the question. I hope Alexey will present his findings

    – Eugene
    Mar 28 at 14:07






  • 1





    Yep, I agree with you @Eugene, I have already asked Alexey for an explanation in the comments. I hope he will find time to give more information around it

    – Serge
    Mar 28 at 14:21











  • Can you explain what’s obvious about it? I mean it’s still a regression? Since this is with less warmup, does it mean 12 takes longer for that? (But then it should be still warmed up?)

    – eckes
    Apr 3 at 4:00












  • 3





    the Invocation -> Iteration was obvious, gc is not; IMO this does not answer the question. I hope Alexey will present his findings

    – Eugene
    Mar 28 at 14:07






  • 1





    Yep, I agree with you @Eugene, I have already asked Alexey for an explanation in the comments. I hope he will find time to give more information around it

    – Serge
    Mar 28 at 14:21











  • Can you explain what’s obvious about it? I mean it’s still a regression? Since this is with less warmup, does it mean 12 takes longer for that? (But then it should be still warmed up?)

    – eckes
    Apr 3 at 4:00







3




3





the Invocation -> Iteration was obvious, gc is not; IMO this does not answer the question. I hope Alexey will present his findings

– Eugene
Mar 28 at 14:07





the Invocation -> Iteration was obvious, gc is not; IMO this does not answer the question. I hope Alexey will present his findings

– Eugene
Mar 28 at 14:07




1




1





Yep, I agree with you @Eugene, I have already asked Alexey for an explanation in the comments. I hope he will find time to give more information around it

– Serge
Mar 28 at 14:21





Yep, I agree with you @Eugene, I have already asked Alexey for an explanation in the comments. I hope he will find time to give more information around it

– Serge
Mar 28 at 14:21













Can you explain what’s obvious about it? I mean it’s still a regression? Since this is with less warmup, does it mean 12 takes longer for that? (But then it should be still warmed up?)

– eckes
Apr 3 at 4:00





Can you explain what’s obvious about it? I mean it’s still a regression? Since this is with less warmup, does it mean 12 takes longer for that? (But then it should be still warmed up?)

– eckes
Apr 3 at 4:00








Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.







Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.



















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55375803%2fmystifying-microbenchmark-result-for-stream-api-on-java-12-vs-java-8-with-gc-t%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현