Products and sum of cubes in FibonacciPrincipal term of the Dirichlet Divisor problem, from the work of A.F. Lavrik?Mean number of $n$-simplices per $(n-2)$-simplex in a triangulated $n$-manifold determinant of fibonacci-sum graphssum of three cubes and parametric solutionsSum of consecutive cubesDistinctness of products of Fibonacci numbersFive cubes, Hadamard and ShklyarskiyGcd of Fibonacci and CatalanA link between hooks and contents: Part II“Oddity” of Fibonacci-Catalan numbers

Products and sum of cubes in Fibonacci


Principal term of the Dirichlet Divisor problem, from the work of A.F. Lavrik?Mean number of $n$-simplices per $(n-2)$-simplex in a triangulated $n$-manifold determinant of fibonacci-sum graphssum of three cubes and parametric solutionsSum of consecutive cubesDistinctness of products of Fibonacci numbersFive cubes, Hadamard and ShklyarskiyGcd of Fibonacci and CatalanA link between hooks and contents: Part II“Oddity” of Fibonacci-Catalan numbers













6












$begingroup$


Consider the familiar sequence of Fibonacci numbers: $F_0=0, F_1=1, F_n=F_n-1+F_n-2$.



Although it is rather easy to furnish an algebraic verification of the below identity, I wish to see a different approach. Hence,




QUESTION. Is there a combinatorial or more conceptual reason for this "pretty" identity?
$$F_nF_n-1F_n-2=fracF_n^3-F_n-1^3-F_n-2^33.$$




Caveat. I'm open to as many alternative replies, of course.



Remark. The motivation comes as follows. Define $F_n!=F_1cdots F_n$ and $F_0!=1$. Further, $binomnk_F:=fracF_n!F_k!cdot F_n-k!$. Then, I was studying these coefficients and was lead to
$$binomn3_F=fracF_n^3-F_n-1^3-F_n-2^33!.$$










share|cite|improve this question











$endgroup$













  • $begingroup$
    I get a different left hand side. Rewrite the n+2 term as the sum of n+1 and n terms, and then compute the difference of cubes and divide by three. Algebraically you get the product of the n term and the n+1 term and (the sum of n+1 and n terms). This seems to have more to do with (a+b)^n - a^n - b^n than with Fibonacci. Gerhard "Unsure Of Any Combinatorial Interpretation" Paseman, 2019.03.26.
    $endgroup$
    – Gerhard Paseman
    Mar 26 at 18:33











  • $begingroup$
    Thanks, edited accordingly.
    $endgroup$
    – T. Amdeberhan
    Mar 26 at 18:40






  • 16




    $begingroup$
    $(a+b)^3 - a^3 - b^3 = 3ab(a+b)$. If $a,b$ are consecutive Fibonacci numbers then $a+b$ is the next.
    $endgroup$
    – Noam D. Elkies
    Mar 26 at 19:58















6












$begingroup$


Consider the familiar sequence of Fibonacci numbers: $F_0=0, F_1=1, F_n=F_n-1+F_n-2$.



Although it is rather easy to furnish an algebraic verification of the below identity, I wish to see a different approach. Hence,




QUESTION. Is there a combinatorial or more conceptual reason for this "pretty" identity?
$$F_nF_n-1F_n-2=fracF_n^3-F_n-1^3-F_n-2^33.$$




Caveat. I'm open to as many alternative replies, of course.



Remark. The motivation comes as follows. Define $F_n!=F_1cdots F_n$ and $F_0!=1$. Further, $binomnk_F:=fracF_n!F_k!cdot F_n-k!$. Then, I was studying these coefficients and was lead to
$$binomn3_F=fracF_n^3-F_n-1^3-F_n-2^33!.$$










share|cite|improve this question











$endgroup$













  • $begingroup$
    I get a different left hand side. Rewrite the n+2 term as the sum of n+1 and n terms, and then compute the difference of cubes and divide by three. Algebraically you get the product of the n term and the n+1 term and (the sum of n+1 and n terms). This seems to have more to do with (a+b)^n - a^n - b^n than with Fibonacci. Gerhard "Unsure Of Any Combinatorial Interpretation" Paseman, 2019.03.26.
    $endgroup$
    – Gerhard Paseman
    Mar 26 at 18:33











  • $begingroup$
    Thanks, edited accordingly.
    $endgroup$
    – T. Amdeberhan
    Mar 26 at 18:40






  • 16




    $begingroup$
    $(a+b)^3 - a^3 - b^3 = 3ab(a+b)$. If $a,b$ are consecutive Fibonacci numbers then $a+b$ is the next.
    $endgroup$
    – Noam D. Elkies
    Mar 26 at 19:58













6












6








6


3



$begingroup$


Consider the familiar sequence of Fibonacci numbers: $F_0=0, F_1=1, F_n=F_n-1+F_n-2$.



Although it is rather easy to furnish an algebraic verification of the below identity, I wish to see a different approach. Hence,




QUESTION. Is there a combinatorial or more conceptual reason for this "pretty" identity?
$$F_nF_n-1F_n-2=fracF_n^3-F_n-1^3-F_n-2^33.$$




Caveat. I'm open to as many alternative replies, of course.



Remark. The motivation comes as follows. Define $F_n!=F_1cdots F_n$ and $F_0!=1$. Further, $binomnk_F:=fracF_n!F_k!cdot F_n-k!$. Then, I was studying these coefficients and was lead to
$$binomn3_F=fracF_n^3-F_n-1^3-F_n-2^33!.$$










share|cite|improve this question











$endgroup$




Consider the familiar sequence of Fibonacci numbers: $F_0=0, F_1=1, F_n=F_n-1+F_n-2$.



Although it is rather easy to furnish an algebraic verification of the below identity, I wish to see a different approach. Hence,




QUESTION. Is there a combinatorial or more conceptual reason for this "pretty" identity?
$$F_nF_n-1F_n-2=fracF_n^3-F_n-1^3-F_n-2^33.$$




Caveat. I'm open to as many alternative replies, of course.



Remark. The motivation comes as follows. Define $F_n!=F_1cdots F_n$ and $F_0!=1$. Further, $binomnk_F:=fracF_n!F_k!cdot F_n-k!$. Then, I was studying these coefficients and was lead to
$$binomn3_F=fracF_n^3-F_n-1^3-F_n-2^33!.$$







nt.number-theory reference-request co.combinatorics elementary-proofs combinatorial-identities






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 26 at 18:40







T. Amdeberhan

















asked Mar 26 at 18:15









T. AmdeberhanT. Amdeberhan

18.7k2 gold badges32 silver badges136 bronze badges




18.7k2 gold badges32 silver badges136 bronze badges














  • $begingroup$
    I get a different left hand side. Rewrite the n+2 term as the sum of n+1 and n terms, and then compute the difference of cubes and divide by three. Algebraically you get the product of the n term and the n+1 term and (the sum of n+1 and n terms). This seems to have more to do with (a+b)^n - a^n - b^n than with Fibonacci. Gerhard "Unsure Of Any Combinatorial Interpretation" Paseman, 2019.03.26.
    $endgroup$
    – Gerhard Paseman
    Mar 26 at 18:33











  • $begingroup$
    Thanks, edited accordingly.
    $endgroup$
    – T. Amdeberhan
    Mar 26 at 18:40






  • 16




    $begingroup$
    $(a+b)^3 - a^3 - b^3 = 3ab(a+b)$. If $a,b$ are consecutive Fibonacci numbers then $a+b$ is the next.
    $endgroup$
    – Noam D. Elkies
    Mar 26 at 19:58
















  • $begingroup$
    I get a different left hand side. Rewrite the n+2 term as the sum of n+1 and n terms, and then compute the difference of cubes and divide by three. Algebraically you get the product of the n term and the n+1 term and (the sum of n+1 and n terms). This seems to have more to do with (a+b)^n - a^n - b^n than with Fibonacci. Gerhard "Unsure Of Any Combinatorial Interpretation" Paseman, 2019.03.26.
    $endgroup$
    – Gerhard Paseman
    Mar 26 at 18:33











  • $begingroup$
    Thanks, edited accordingly.
    $endgroup$
    – T. Amdeberhan
    Mar 26 at 18:40






  • 16




    $begingroup$
    $(a+b)^3 - a^3 - b^3 = 3ab(a+b)$. If $a,b$ are consecutive Fibonacci numbers then $a+b$ is the next.
    $endgroup$
    – Noam D. Elkies
    Mar 26 at 19:58















$begingroup$
I get a different left hand side. Rewrite the n+2 term as the sum of n+1 and n terms, and then compute the difference of cubes and divide by three. Algebraically you get the product of the n term and the n+1 term and (the sum of n+1 and n terms). This seems to have more to do with (a+b)^n - a^n - b^n than with Fibonacci. Gerhard "Unsure Of Any Combinatorial Interpretation" Paseman, 2019.03.26.
$endgroup$
– Gerhard Paseman
Mar 26 at 18:33





$begingroup$
I get a different left hand side. Rewrite the n+2 term as the sum of n+1 and n terms, and then compute the difference of cubes and divide by three. Algebraically you get the product of the n term and the n+1 term and (the sum of n+1 and n terms). This seems to have more to do with (a+b)^n - a^n - b^n than with Fibonacci. Gerhard "Unsure Of Any Combinatorial Interpretation" Paseman, 2019.03.26.
$endgroup$
– Gerhard Paseman
Mar 26 at 18:33













$begingroup$
Thanks, edited accordingly.
$endgroup$
– T. Amdeberhan
Mar 26 at 18:40




$begingroup$
Thanks, edited accordingly.
$endgroup$
– T. Amdeberhan
Mar 26 at 18:40




16




16




$begingroup$
$(a+b)^3 - a^3 - b^3 = 3ab(a+b)$. If $a,b$ are consecutive Fibonacci numbers then $a+b$ is the next.
$endgroup$
– Noam D. Elkies
Mar 26 at 19:58




$begingroup$
$(a+b)^3 - a^3 - b^3 = 3ab(a+b)$. If $a,b$ are consecutive Fibonacci numbers then $a+b$ is the next.
$endgroup$
– Noam D. Elkies
Mar 26 at 19:58










2 Answers
2






active

oldest

votes


















15












$begingroup$

$F_n$ is the number of compositions (ordered partitions) of $n-1$ into
parts equal to 1 or 2. The number of triples $(a,b,c)$ of such
compositions is $F_n^3$. The number such that $a,b,c$ all begin with 1
is $F_n-1^3$. The number such that $a,b,c$ all begin with 2 is
$F_n-2^3$. Otherwise either one of $a,b,c$ begins with 1 and the
others begin with 2, or vice versa. There are $3F_n-1F_n-2^2$ such
triples of the first type. Similarly there are $3F_n-1^2F_n-2$
of the second type, i.e., one of
$a,b,c$ begins with 2 and the others begin with 1. Hence
begineqnarray* F_n^3 & = & F_n-1^3 + F_n-2^3
+3(F_n-1^2F_n-2+F_n-1F_n-2^2)\ & = &
F_n-1^3 + F_n-2^3 +3F_n-1F_n-2(F_n-1+F_n-2)\ & = &
F_n-1^3 + F_n-2^3 + 3F_nF_n-1F_n-2. endeqnarray*






share|cite|improve this answer











$endgroup$










  • 3




    $begingroup$
    With the greatest respect, and mostly out of curiosity, would you really prefer such a bijective proof to the algebra in e.g. Elkies's comment?
    $endgroup$
    – Lucia
    Mar 27 at 0:01






  • 5




    $begingroup$
    If it's simply a matter of proving the identity, then I prefer Elkies. If you want to understand it combinatorially, then a bijective proof is better.
    $endgroup$
    – Richard Stanley
    Mar 27 at 0:13






  • 9




    $begingroup$
    The OP specified a desire for "combinatorial" or "conceptual" explanations. But the distinction between combinatorics and algebra is blurry here. You have to choose one ball from each of three urns, each containing $a$ amaranth and $b$ blue balls. How many choices don't have all three balls the same color? On the one hand, $(a+b)^3-a^3-b^3$. On the other, choose any cyclic permutation of (amaranth, blue, either) to get $3ab(a+b)$.
    $endgroup$
    – Noam D. Elkies
    Mar 27 at 0:14






  • 3




    $begingroup$
    +1 for use of "amaranth" as a color.
    $endgroup$
    – Michael Lugo
    Mar 27 at 14:16










  • $begingroup$
    This generalizes to give $F_n-1 F_n-2 = (F_n^2 - F_n-1^2 - F_n-2^2)/2$ (by considering pairs of compositions) but one doesn't get anything similarly nice for fourth powers as far as I can tell.
    $endgroup$
    – Michael Lugo
    Mar 27 at 14:22


















14












$begingroup$

This is just the following identity:
$$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$ Since $$F_n+(-F_n-1)+(-F_n-2)=0,$$ your formula follows.






share|cite|improve this answer









$endgroup$










  • 8




    $begingroup$
    Simpler yet: since $F_n = F_n-1 + F_n+2$ it's enough to use the two-variable identity $(a+b)^3 - a^3 - b^3 = 3ab(a+b)$ which is a quick consequence of the binomial expansion of $(a+b)^3$.
    $endgroup$
    – Noam D. Elkies
    Mar 26 at 20:00










  • $begingroup$
    @NoamD.Elkies: Thanks for this approach too.
    $endgroup$
    – T. Amdeberhan
    Mar 27 at 14:47













Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326414%2fproducts-and-sum-of-cubes-in-fibonacci%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









15












$begingroup$

$F_n$ is the number of compositions (ordered partitions) of $n-1$ into
parts equal to 1 or 2. The number of triples $(a,b,c)$ of such
compositions is $F_n^3$. The number such that $a,b,c$ all begin with 1
is $F_n-1^3$. The number such that $a,b,c$ all begin with 2 is
$F_n-2^3$. Otherwise either one of $a,b,c$ begins with 1 and the
others begin with 2, or vice versa. There are $3F_n-1F_n-2^2$ such
triples of the first type. Similarly there are $3F_n-1^2F_n-2$
of the second type, i.e., one of
$a,b,c$ begins with 2 and the others begin with 1. Hence
begineqnarray* F_n^3 & = & F_n-1^3 + F_n-2^3
+3(F_n-1^2F_n-2+F_n-1F_n-2^2)\ & = &
F_n-1^3 + F_n-2^3 +3F_n-1F_n-2(F_n-1+F_n-2)\ & = &
F_n-1^3 + F_n-2^3 + 3F_nF_n-1F_n-2. endeqnarray*






share|cite|improve this answer











$endgroup$










  • 3




    $begingroup$
    With the greatest respect, and mostly out of curiosity, would you really prefer such a bijective proof to the algebra in e.g. Elkies's comment?
    $endgroup$
    – Lucia
    Mar 27 at 0:01






  • 5




    $begingroup$
    If it's simply a matter of proving the identity, then I prefer Elkies. If you want to understand it combinatorially, then a bijective proof is better.
    $endgroup$
    – Richard Stanley
    Mar 27 at 0:13






  • 9




    $begingroup$
    The OP specified a desire for "combinatorial" or "conceptual" explanations. But the distinction between combinatorics and algebra is blurry here. You have to choose one ball from each of three urns, each containing $a$ amaranth and $b$ blue balls. How many choices don't have all three balls the same color? On the one hand, $(a+b)^3-a^3-b^3$. On the other, choose any cyclic permutation of (amaranth, blue, either) to get $3ab(a+b)$.
    $endgroup$
    – Noam D. Elkies
    Mar 27 at 0:14






  • 3




    $begingroup$
    +1 for use of "amaranth" as a color.
    $endgroup$
    – Michael Lugo
    Mar 27 at 14:16










  • $begingroup$
    This generalizes to give $F_n-1 F_n-2 = (F_n^2 - F_n-1^2 - F_n-2^2)/2$ (by considering pairs of compositions) but one doesn't get anything similarly nice for fourth powers as far as I can tell.
    $endgroup$
    – Michael Lugo
    Mar 27 at 14:22















15












$begingroup$

$F_n$ is the number of compositions (ordered partitions) of $n-1$ into
parts equal to 1 or 2. The number of triples $(a,b,c)$ of such
compositions is $F_n^3$. The number such that $a,b,c$ all begin with 1
is $F_n-1^3$. The number such that $a,b,c$ all begin with 2 is
$F_n-2^3$. Otherwise either one of $a,b,c$ begins with 1 and the
others begin with 2, or vice versa. There are $3F_n-1F_n-2^2$ such
triples of the first type. Similarly there are $3F_n-1^2F_n-2$
of the second type, i.e., one of
$a,b,c$ begins with 2 and the others begin with 1. Hence
begineqnarray* F_n^3 & = & F_n-1^3 + F_n-2^3
+3(F_n-1^2F_n-2+F_n-1F_n-2^2)\ & = &
F_n-1^3 + F_n-2^3 +3F_n-1F_n-2(F_n-1+F_n-2)\ & = &
F_n-1^3 + F_n-2^3 + 3F_nF_n-1F_n-2. endeqnarray*






share|cite|improve this answer











$endgroup$










  • 3




    $begingroup$
    With the greatest respect, and mostly out of curiosity, would you really prefer such a bijective proof to the algebra in e.g. Elkies's comment?
    $endgroup$
    – Lucia
    Mar 27 at 0:01






  • 5




    $begingroup$
    If it's simply a matter of proving the identity, then I prefer Elkies. If you want to understand it combinatorially, then a bijective proof is better.
    $endgroup$
    – Richard Stanley
    Mar 27 at 0:13






  • 9




    $begingroup$
    The OP specified a desire for "combinatorial" or "conceptual" explanations. But the distinction between combinatorics and algebra is blurry here. You have to choose one ball from each of three urns, each containing $a$ amaranth and $b$ blue balls. How many choices don't have all three balls the same color? On the one hand, $(a+b)^3-a^3-b^3$. On the other, choose any cyclic permutation of (amaranth, blue, either) to get $3ab(a+b)$.
    $endgroup$
    – Noam D. Elkies
    Mar 27 at 0:14






  • 3




    $begingroup$
    +1 for use of "amaranth" as a color.
    $endgroup$
    – Michael Lugo
    Mar 27 at 14:16










  • $begingroup$
    This generalizes to give $F_n-1 F_n-2 = (F_n^2 - F_n-1^2 - F_n-2^2)/2$ (by considering pairs of compositions) but one doesn't get anything similarly nice for fourth powers as far as I can tell.
    $endgroup$
    – Michael Lugo
    Mar 27 at 14:22













15












15








15





$begingroup$

$F_n$ is the number of compositions (ordered partitions) of $n-1$ into
parts equal to 1 or 2. The number of triples $(a,b,c)$ of such
compositions is $F_n^3$. The number such that $a,b,c$ all begin with 1
is $F_n-1^3$. The number such that $a,b,c$ all begin with 2 is
$F_n-2^3$. Otherwise either one of $a,b,c$ begins with 1 and the
others begin with 2, or vice versa. There are $3F_n-1F_n-2^2$ such
triples of the first type. Similarly there are $3F_n-1^2F_n-2$
of the second type, i.e., one of
$a,b,c$ begins with 2 and the others begin with 1. Hence
begineqnarray* F_n^3 & = & F_n-1^3 + F_n-2^3
+3(F_n-1^2F_n-2+F_n-1F_n-2^2)\ & = &
F_n-1^3 + F_n-2^3 +3F_n-1F_n-2(F_n-1+F_n-2)\ & = &
F_n-1^3 + F_n-2^3 + 3F_nF_n-1F_n-2. endeqnarray*






share|cite|improve this answer











$endgroup$



$F_n$ is the number of compositions (ordered partitions) of $n-1$ into
parts equal to 1 or 2. The number of triples $(a,b,c)$ of such
compositions is $F_n^3$. The number such that $a,b,c$ all begin with 1
is $F_n-1^3$. The number such that $a,b,c$ all begin with 2 is
$F_n-2^3$. Otherwise either one of $a,b,c$ begins with 1 and the
others begin with 2, or vice versa. There are $3F_n-1F_n-2^2$ such
triples of the first type. Similarly there are $3F_n-1^2F_n-2$
of the second type, i.e., one of
$a,b,c$ begins with 2 and the others begin with 1. Hence
begineqnarray* F_n^3 & = & F_n-1^3 + F_n-2^3
+3(F_n-1^2F_n-2+F_n-1F_n-2^2)\ & = &
F_n-1^3 + F_n-2^3 +3F_n-1F_n-2(F_n-1+F_n-2)\ & = &
F_n-1^3 + F_n-2^3 + 3F_nF_n-1F_n-2. endeqnarray*







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 29 at 6:04









Aaron Meyerowitz

24.9k1 gold badge34 silver badges90 bronze badges




24.9k1 gold badge34 silver badges90 bronze badges










answered Mar 26 at 23:54









Richard StanleyRichard Stanley

30k9 gold badges120 silver badges195 bronze badges




30k9 gold badges120 silver badges195 bronze badges










  • 3




    $begingroup$
    With the greatest respect, and mostly out of curiosity, would you really prefer such a bijective proof to the algebra in e.g. Elkies's comment?
    $endgroup$
    – Lucia
    Mar 27 at 0:01






  • 5




    $begingroup$
    If it's simply a matter of proving the identity, then I prefer Elkies. If you want to understand it combinatorially, then a bijective proof is better.
    $endgroup$
    – Richard Stanley
    Mar 27 at 0:13






  • 9




    $begingroup$
    The OP specified a desire for "combinatorial" or "conceptual" explanations. But the distinction between combinatorics and algebra is blurry here. You have to choose one ball from each of three urns, each containing $a$ amaranth and $b$ blue balls. How many choices don't have all three balls the same color? On the one hand, $(a+b)^3-a^3-b^3$. On the other, choose any cyclic permutation of (amaranth, blue, either) to get $3ab(a+b)$.
    $endgroup$
    – Noam D. Elkies
    Mar 27 at 0:14






  • 3




    $begingroup$
    +1 for use of "amaranth" as a color.
    $endgroup$
    – Michael Lugo
    Mar 27 at 14:16










  • $begingroup$
    This generalizes to give $F_n-1 F_n-2 = (F_n^2 - F_n-1^2 - F_n-2^2)/2$ (by considering pairs of compositions) but one doesn't get anything similarly nice for fourth powers as far as I can tell.
    $endgroup$
    – Michael Lugo
    Mar 27 at 14:22












  • 3




    $begingroup$
    With the greatest respect, and mostly out of curiosity, would you really prefer such a bijective proof to the algebra in e.g. Elkies's comment?
    $endgroup$
    – Lucia
    Mar 27 at 0:01






  • 5




    $begingroup$
    If it's simply a matter of proving the identity, then I prefer Elkies. If you want to understand it combinatorially, then a bijective proof is better.
    $endgroup$
    – Richard Stanley
    Mar 27 at 0:13






  • 9




    $begingroup$
    The OP specified a desire for "combinatorial" or "conceptual" explanations. But the distinction between combinatorics and algebra is blurry here. You have to choose one ball from each of three urns, each containing $a$ amaranth and $b$ blue balls. How many choices don't have all three balls the same color? On the one hand, $(a+b)^3-a^3-b^3$. On the other, choose any cyclic permutation of (amaranth, blue, either) to get $3ab(a+b)$.
    $endgroup$
    – Noam D. Elkies
    Mar 27 at 0:14






  • 3




    $begingroup$
    +1 for use of "amaranth" as a color.
    $endgroup$
    – Michael Lugo
    Mar 27 at 14:16










  • $begingroup$
    This generalizes to give $F_n-1 F_n-2 = (F_n^2 - F_n-1^2 - F_n-2^2)/2$ (by considering pairs of compositions) but one doesn't get anything similarly nice for fourth powers as far as I can tell.
    $endgroup$
    – Michael Lugo
    Mar 27 at 14:22







3




3




$begingroup$
With the greatest respect, and mostly out of curiosity, would you really prefer such a bijective proof to the algebra in e.g. Elkies's comment?
$endgroup$
– Lucia
Mar 27 at 0:01




$begingroup$
With the greatest respect, and mostly out of curiosity, would you really prefer such a bijective proof to the algebra in e.g. Elkies's comment?
$endgroup$
– Lucia
Mar 27 at 0:01




5




5




$begingroup$
If it's simply a matter of proving the identity, then I prefer Elkies. If you want to understand it combinatorially, then a bijective proof is better.
$endgroup$
– Richard Stanley
Mar 27 at 0:13




$begingroup$
If it's simply a matter of proving the identity, then I prefer Elkies. If you want to understand it combinatorially, then a bijective proof is better.
$endgroup$
– Richard Stanley
Mar 27 at 0:13




9




9




$begingroup$
The OP specified a desire for "combinatorial" or "conceptual" explanations. But the distinction between combinatorics and algebra is blurry here. You have to choose one ball from each of three urns, each containing $a$ amaranth and $b$ blue balls. How many choices don't have all three balls the same color? On the one hand, $(a+b)^3-a^3-b^3$. On the other, choose any cyclic permutation of (amaranth, blue, either) to get $3ab(a+b)$.
$endgroup$
– Noam D. Elkies
Mar 27 at 0:14




$begingroup$
The OP specified a desire for "combinatorial" or "conceptual" explanations. But the distinction between combinatorics and algebra is blurry here. You have to choose one ball from each of three urns, each containing $a$ amaranth and $b$ blue balls. How many choices don't have all three balls the same color? On the one hand, $(a+b)^3-a^3-b^3$. On the other, choose any cyclic permutation of (amaranth, blue, either) to get $3ab(a+b)$.
$endgroup$
– Noam D. Elkies
Mar 27 at 0:14




3




3




$begingroup$
+1 for use of "amaranth" as a color.
$endgroup$
– Michael Lugo
Mar 27 at 14:16




$begingroup$
+1 for use of "amaranth" as a color.
$endgroup$
– Michael Lugo
Mar 27 at 14:16












$begingroup$
This generalizes to give $F_n-1 F_n-2 = (F_n^2 - F_n-1^2 - F_n-2^2)/2$ (by considering pairs of compositions) but one doesn't get anything similarly nice for fourth powers as far as I can tell.
$endgroup$
– Michael Lugo
Mar 27 at 14:22




$begingroup$
This generalizes to give $F_n-1 F_n-2 = (F_n^2 - F_n-1^2 - F_n-2^2)/2$ (by considering pairs of compositions) but one doesn't get anything similarly nice for fourth powers as far as I can tell.
$endgroup$
– Michael Lugo
Mar 27 at 14:22











14












$begingroup$

This is just the following identity:
$$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$ Since $$F_n+(-F_n-1)+(-F_n-2)=0,$$ your formula follows.






share|cite|improve this answer









$endgroup$










  • 8




    $begingroup$
    Simpler yet: since $F_n = F_n-1 + F_n+2$ it's enough to use the two-variable identity $(a+b)^3 - a^3 - b^3 = 3ab(a+b)$ which is a quick consequence of the binomial expansion of $(a+b)^3$.
    $endgroup$
    – Noam D. Elkies
    Mar 26 at 20:00










  • $begingroup$
    @NoamD.Elkies: Thanks for this approach too.
    $endgroup$
    – T. Amdeberhan
    Mar 27 at 14:47















14












$begingroup$

This is just the following identity:
$$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$ Since $$F_n+(-F_n-1)+(-F_n-2)=0,$$ your formula follows.






share|cite|improve this answer









$endgroup$










  • 8




    $begingroup$
    Simpler yet: since $F_n = F_n-1 + F_n+2$ it's enough to use the two-variable identity $(a+b)^3 - a^3 - b^3 = 3ab(a+b)$ which is a quick consequence of the binomial expansion of $(a+b)^3$.
    $endgroup$
    – Noam D. Elkies
    Mar 26 at 20:00










  • $begingroup$
    @NoamD.Elkies: Thanks for this approach too.
    $endgroup$
    – T. Amdeberhan
    Mar 27 at 14:47













14












14








14





$begingroup$

This is just the following identity:
$$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$ Since $$F_n+(-F_n-1)+(-F_n-2)=0,$$ your formula follows.






share|cite|improve this answer









$endgroup$



This is just the following identity:
$$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$ Since $$F_n+(-F_n-1)+(-F_n-2)=0,$$ your formula follows.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 26 at 19:52









Cherng-tiao PerngCherng-tiao Perng

9151 gold badge5 silver badges9 bronze badges




9151 gold badge5 silver badges9 bronze badges










  • 8




    $begingroup$
    Simpler yet: since $F_n = F_n-1 + F_n+2$ it's enough to use the two-variable identity $(a+b)^3 - a^3 - b^3 = 3ab(a+b)$ which is a quick consequence of the binomial expansion of $(a+b)^3$.
    $endgroup$
    – Noam D. Elkies
    Mar 26 at 20:00










  • $begingroup$
    @NoamD.Elkies: Thanks for this approach too.
    $endgroup$
    – T. Amdeberhan
    Mar 27 at 14:47












  • 8




    $begingroup$
    Simpler yet: since $F_n = F_n-1 + F_n+2$ it's enough to use the two-variable identity $(a+b)^3 - a^3 - b^3 = 3ab(a+b)$ which is a quick consequence of the binomial expansion of $(a+b)^3$.
    $endgroup$
    – Noam D. Elkies
    Mar 26 at 20:00










  • $begingroup$
    @NoamD.Elkies: Thanks for this approach too.
    $endgroup$
    – T. Amdeberhan
    Mar 27 at 14:47







8




8




$begingroup$
Simpler yet: since $F_n = F_n-1 + F_n+2$ it's enough to use the two-variable identity $(a+b)^3 - a^3 - b^3 = 3ab(a+b)$ which is a quick consequence of the binomial expansion of $(a+b)^3$.
$endgroup$
– Noam D. Elkies
Mar 26 at 20:00




$begingroup$
Simpler yet: since $F_n = F_n-1 + F_n+2$ it's enough to use the two-variable identity $(a+b)^3 - a^3 - b^3 = 3ab(a+b)$ which is a quick consequence of the binomial expansion of $(a+b)^3$.
$endgroup$
– Noam D. Elkies
Mar 26 at 20:00












$begingroup$
@NoamD.Elkies: Thanks for this approach too.
$endgroup$
– T. Amdeberhan
Mar 27 at 14:47




$begingroup$
@NoamD.Elkies: Thanks for this approach too.
$endgroup$
– T. Amdeberhan
Mar 27 at 14:47

















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326414%2fproducts-and-sum-of-cubes-in-fibonacci%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현