How to output in R all possible deviations of a word for a fixed distance value?Grouping functions (tapply, by, aggregate) and the *apply familyRemove rows with all or some NAs (missing values) in data.frameHow to build a function to return the minimum distance to [-1,0,1]?Get all possible string sequences where each element comes from different set in RHow do I replace multiple words in the column of a data frame, with a single word?Word-level edit distance between two sentences in RFaster alternative to extract all words in text matching words in another vectorHow to calculate proximity of words to a specific term in a documentCount Word Occurrence in Distance to Defined TermRegex positive lookbehind including all words preceded by word

How could an animal "smell" carbon monoxide?

Why should I cook the flour first when making bechamel sauce?

Why did Steve Rogers choose this character in Endgame?

How to determine the optimal threshold to achieve the highest accuracy

Cine footage fron Saturn V launch's

Is straight-up writing someone's opinions telling?

Is it ethical for a company to ask its employees to move furniture on a weekend?

What details should I consider before agreeing for part of my salary to be 'retained' by employer?

What are "full piece" and "half piece" in chess?

What could be reasoning of male prison in VR world to only allow undershirt and sarong as nightwear to male prisoners

What "fuel more powerful than anything the West (had) in stock" put Laika in orbit aboard Sputnik 2?

Advice for paying off student loans and auto loans now that I have my first 'real' job

Interviewing with an unmentioned 9 months of sick leave taken during a job

Why doesn't philosophy have higher standards for its arguments?

Is the Malay "garam" (salt) related to the Latin "garum" (fish sauce)?

Why isn't aluminium involved in biological processes?

What problems was on a lunar module of Apollo 11?

Can a Resident Assistant Be Told to Ignore a Lawful Order?

What impact would a dragon the size of Asia have on the environment?

How to ask my office to remove the pride decorations without appearing anti-LGBTQ?

What exactly is a Hadouken?

What is the meaning of [[:space:]] in bash?

Can "plane" (aeroplane) be used as a non-count noun?

What is the word for "event executor"?



How to output in R all possible deviations of a word for a fixed distance value?


Grouping functions (tapply, by, aggregate) and the *apply familyRemove rows with all or some NAs (missing values) in data.frameHow to build a function to return the minimum distance to [-1,0,1]?Get all possible string sequences where each element comes from different set in RHow do I replace multiple words in the column of a data frame, with a single word?Word-level edit distance between two sentences in RFaster alternative to extract all words in text matching words in another vectorHow to calculate proximity of words to a specific term in a documentCount Word Occurrence in Distance to Defined TermRegex positive lookbehind including all words preceded by word






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1















I have a word and want to output in R all possible deviatons (replacement, substitution, insertion) for a fixed distance value into a vector.



For instance, the word "Cat" and a fixed distance value of 1 results in a vector with the elements "cot", "at", ...










share|improve this question
























  • You might want to try all possible modifications at all possible places and collect result. Be aware, however, that for the distance greater than 1 some modifications may inadvertently cancel out. For example if you replace 'a' with 'o' and then insert 'a' you may get "cat"→"cot"→"coat" which appears just 1 away from "cat", even though 2 modifications were done.

    – CiaPan
    Mar 26 at 8:21











  • But how to do it automatically in R ???

    – De De
    Mar 26 at 12:18











  • The adist function would be a good place to start.

    – mickey
    Mar 26 at 14:10











  • Thanks for the suggestion. Is it just a rough idea or do you have anything in mind ??

    – De De
    Mar 26 at 14:16

















1















I have a word and want to output in R all possible deviatons (replacement, substitution, insertion) for a fixed distance value into a vector.



For instance, the word "Cat" and a fixed distance value of 1 results in a vector with the elements "cot", "at", ...










share|improve this question
























  • You might want to try all possible modifications at all possible places and collect result. Be aware, however, that for the distance greater than 1 some modifications may inadvertently cancel out. For example if you replace 'a' with 'o' and then insert 'a' you may get "cat"→"cot"→"coat" which appears just 1 away from "cat", even though 2 modifications were done.

    – CiaPan
    Mar 26 at 8:21











  • But how to do it automatically in R ???

    – De De
    Mar 26 at 12:18











  • The adist function would be a good place to start.

    – mickey
    Mar 26 at 14:10











  • Thanks for the suggestion. Is it just a rough idea or do you have anything in mind ??

    – De De
    Mar 26 at 14:16













1












1








1








I have a word and want to output in R all possible deviatons (replacement, substitution, insertion) for a fixed distance value into a vector.



For instance, the word "Cat" and a fixed distance value of 1 results in a vector with the elements "cot", "at", ...










share|improve this question
















I have a word and want to output in R all possible deviatons (replacement, substitution, insertion) for a fixed distance value into a vector.



For instance, the word "Cat" and a fixed distance value of 1 results in a vector with the elements "cot", "at", ...







r text-mining tidyverse stringr quanteda






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Mar 26 at 23:06









Ken Benoit

8,19317 silver badges36 bronze badges




8,19317 silver badges36 bronze badges










asked Mar 26 at 8:12









De DeDe De

245 bronze badges




245 bronze badges












  • You might want to try all possible modifications at all possible places and collect result. Be aware, however, that for the distance greater than 1 some modifications may inadvertently cancel out. For example if you replace 'a' with 'o' and then insert 'a' you may get "cat"→"cot"→"coat" which appears just 1 away from "cat", even though 2 modifications were done.

    – CiaPan
    Mar 26 at 8:21











  • But how to do it automatically in R ???

    – De De
    Mar 26 at 12:18











  • The adist function would be a good place to start.

    – mickey
    Mar 26 at 14:10











  • Thanks for the suggestion. Is it just a rough idea or do you have anything in mind ??

    – De De
    Mar 26 at 14:16

















  • You might want to try all possible modifications at all possible places and collect result. Be aware, however, that for the distance greater than 1 some modifications may inadvertently cancel out. For example if you replace 'a' with 'o' and then insert 'a' you may get "cat"→"cot"→"coat" which appears just 1 away from "cat", even though 2 modifications were done.

    – CiaPan
    Mar 26 at 8:21











  • But how to do it automatically in R ???

    – De De
    Mar 26 at 12:18











  • The adist function would be a good place to start.

    – mickey
    Mar 26 at 14:10











  • Thanks for the suggestion. Is it just a rough idea or do you have anything in mind ??

    – De De
    Mar 26 at 14:16
















You might want to try all possible modifications at all possible places and collect result. Be aware, however, that for the distance greater than 1 some modifications may inadvertently cancel out. For example if you replace 'a' with 'o' and then insert 'a' you may get "cat"→"cot"→"coat" which appears just 1 away from "cat", even though 2 modifications were done.

– CiaPan
Mar 26 at 8:21





You might want to try all possible modifications at all possible places and collect result. Be aware, however, that for the distance greater than 1 some modifications may inadvertently cancel out. For example if you replace 'a' with 'o' and then insert 'a' you may get "cat"→"cot"→"coat" which appears just 1 away from "cat", even though 2 modifications were done.

– CiaPan
Mar 26 at 8:21













But how to do it automatically in R ???

– De De
Mar 26 at 12:18





But how to do it automatically in R ???

– De De
Mar 26 at 12:18













The adist function would be a good place to start.

– mickey
Mar 26 at 14:10





The adist function would be a good place to start.

– mickey
Mar 26 at 14:10













Thanks for the suggestion. Is it just a rough idea or do you have anything in mind ??

– De De
Mar 26 at 14:16





Thanks for the suggestion. Is it just a rough idea or do you have anything in mind ??

– De De
Mar 26 at 14:16












1 Answer
1






active

oldest

votes


















1














I'm going to assume that you want all actual words, not just permutations of the characters with an edit distance of 1 that would include non-words such as "zat".



We can do this using adist() to compute the edit distance between your target word and all eligible English words, taken from some word list. Here, I used the English syllable dictionary from the quanteda package (you did tag this question as quanteda after all) but this could have been any vector of English dictionary words from any other source as well.



To narrow things down, we first exclude all words that are different in length from the target word by your distance value.





distfn <- function(word, distance = 1) 
# select eligible words for efficiency
eligible_y_words <- names(quanteda::data_int_syllables)
wordlengths <- nchar(eligible_y_words)
eligible_y_words <- eligible_y_words[wordlengths >= (nchar(word) - distance) &
wordlengths <= (nchar(word) + distance)]
# compute Levenshtein distance
distances <- utils::adist(word, eligible_y_words)[1, ]
# return only those for the requested distance value
eligible_y_words[distances == distance]


distfn("cat", 1)
## [1] "at" "bat" "ca" "cab" "cac" "cad" "cai" "cal" "cam" "can"
## [11] "cant" "cao" "cap" "caq" "car" "cart" "cas" "cast" "cate" "cato"
## [21] "cats" "catt" "cau" "caw" "cay" "chat" "coat" "cot" "ct" "cut"
## [31] "dat" "eat" "fat" "gat" "hat" "kat" "lat" "mat" "nat" "oat"
## [41] "pat" "rat" "sat" "scat" "tat" "vat" "wat"


To demonstrate how this works on longer words, with alternative distance values.



distfn("coffee", 1)
## [1] "caffee" "coffeen" "coffees" "coffel" "coffer" "coffey" "cuffee"
## [8] "toffee"

distfn("coffee", 2)
## [1] "caffey" "calfee" "chafee" "chaffee" "cofer" "coffee's"
## [7] "coffelt" "coffers" "coffin" "cofide" "cohee" "coiffe"
## [13] "coiffed" "colee" "colfer" "combee" "comfed" "confer"
## [19] "conlee" "coppee" "cottee" "coulee" "coutee" "cuffe"
## [25] "cuffed" "diffee" "duffee" "hoffer" "jaffee" "joffe"
## [31] "mcaffee" "moffet" "noffke" "offen" "offer" "roffe"
## [37] "scoffed" "soffel" "soffer" "yoffie"


(Yes, according to the CMU pronunciation dictionary, those are all actual words...)



EDIT: Make for all permutations of letters, not just actual words



This involves permutations from the alphabet that have the fixed edit distances from the input word. Here I've done it not particular efficiently by forming all permutations of letters within the eligible ranges, and then computing their edit distance from the target word, and then selecting them. So it's a variation of above, except instead of a dictionary, it uses permuted words.



distfn2 <- function(word, distance = 1) 
result <- character()

# start with deletions
for (i in max((nchar(word) - distance), 0):(nchar(word) - 1))
result <- c(
result,
combn(unlist(strsplit(word, "", fixed = TRUE)), i,
paste,
collapse = "", simplify = TRUE
)
)


# now for changes and insertions
for (i in (nchar(word)):(nchar(word) + distance))
# all possible edits
edits <- apply(expand.grid(rep(list(letters), i)),
1, paste0,
collapse = ""
)
# remove original word
edits <- edits[edits != word]
# get all distances, add to result
distances <- utils::adist(word, edits)[1, ]
result <- c(result, edits[distances == distance])


result



For the OP example:



distfn2("cat", 1)
## [1] "ca" "ct" "at" "caa" "cab" "cac" "cad" "cae" "caf" "cag"
## [11] "cah" "cai" "caj" "cak" "cal" "cam" "can" "cao" "cap" "caq"
## [21] "car" "cas" "aat" "bat" "dat" "eat" "fat" "gat" "hat" "iat"
## [31] "jat" "kat" "lat" "mat" "nat" "oat" "pat" "qat" "rat" "sat"
## [41] "tat" "uat" "vat" "wat" "xat" "yat" "zat" "cbt" "cct" "cdt"
## [51] "cet" "cft" "cgt" "cht" "cit" "cjt" "ckt" "clt" "cmt" "cnt"
## [61] "cot" "cpt" "cqt" "crt" "cst" "ctt" "cut" "cvt" "cwt" "cxt"
## [71] "cyt" "czt" "cau" "cav" "caw" "cax" "cay" "caz" "cata" "catb"
## [81] "catc" "catd" "cate" "catf" "catg" "cath" "cati" "catj" "catk" "catl"
## [91] "catm" "catn" "cato" "catp" "catq" "catr" "cats" "caat" "cbat" "acat"
## [101] "bcat" "ccat" "dcat" "ecat" "fcat" "gcat" "hcat" "icat" "jcat" "kcat"
## [111] "lcat" "mcat" "ncat" "ocat" "pcat" "qcat" "rcat" "scat" "tcat" "ucat"
## [121] "vcat" "wcat" "xcat" "ycat" "zcat" "cdat" "ceat" "cfat" "cgat" "chat"
## [131] "ciat" "cjat" "ckat" "clat" "cmat" "cnat" "coat" "cpat" "cqat" "crat"
## [141] "csat" "ctat" "cuat" "cvat" "cwat" "cxat" "cyat" "czat" "cabt" "cact"
## [151] "cadt" "caet" "caft" "cagt" "caht" "cait" "cajt" "cakt" "calt" "camt"
## [161] "cant" "caot" "capt" "caqt" "cart" "cast" "catt" "caut" "cavt" "cawt"
## [171] "caxt" "cayt" "cazt" "catu" "catv" "catw" "catx" "caty" "catz"


Also works with other edit distances, although it becomes very slow for longer words.



d2 <- distfn2("cat", 2)
set.seed(100)
c(head(d2, 50), sample(d2, 50), tail(d2, 50))
## [1] "c" "a" "t" "ca" "ct" "at" "aaa" "baa"
## [9] "daa" "eaa" "faa" "gaa" "haa" "iaa" "jaa" "kaa"
## [17] "laa" "maa" "naa" "oaa" "paa" "qaa" "raa" "saa"
## [25] "taa" "uaa" "vaa" "waa" "xaa" "yaa" "zaa" "cba"
## [33] "aca" "bca" "cca" "dca" "eca" "fca" "gca" "hca"
## [41] "ica" "jca" "kca" "lca" "mca" "nca" "oca" "pca"
## [49] "qca" "rca" "cnts" "cian" "pcatb" "cqo" "uawt" "hazt"
## [57] "cpxat" "aaet" "ckata" "caod" "ncatl" "qcamt" "cdtp" "qajt"
## [65] "bckat" "qcatr" "cqah" "rcbt" "cvbt" "bbcat" "vcaz" "ylcat"
## [73] "cahz" "jcgat" "mant" "jatd" "czlat" "cbamt" "cajta" "cafp"
## [81] "cizt" "cmaut" "qwat" "jcazt" "hdcat" "ucant" "hate" "cajtl"
## [89] "caaty" "cix" "nmat" "cajit" "cmnat" "caobt" "catoi" "ncau"
## [97] "ucoat" "ncamt" "jath" "oats" "chatz" "ciatz" "cjatz" "ckatz"
## [105] "clatz" "cmatz" "cnatz" "coatz" "cpatz" "cqatz" "cratz" "csatz"
## [113] "ctatz" "cuatz" "cvatz" "cwatz" "cxatz" "cyatz" "czatz" "cabtz"
## [121] "cactz" "cadtz" "caetz" "caftz" "cagtz" "cahtz" "caitz" "cajtz"
## [129] "caktz" "caltz" "camtz" "cantz" "caotz" "captz" "caqtz" "cartz"
## [137] "castz" "cattz" "cautz" "cavtz" "cawtz" "caxtz" "caytz" "caztz"
## [145] "catuz" "catvz" "catwz" "catxz" "catyz" "catzz"


This could be speeded up by less brute force formation of all permutations and then applying adist() to them - it could consist of changes or insertions of known edit distances generated algorithmically from letters.






share|improve this answer

























  • Thank you very much for your effort! But I am searching for all possible combinations (permutations) ...

    – De De
    Mar 27 at 14:58











  • OK I added that.

    – Ken Benoit
    Mar 28 at 16:46











  • Many thanks for your support!

    – De De
    Apr 4 at 16:47










Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55352498%2fhow-to-output-in-r-all-possible-deviations-of-a-word-for-a-fixed-distance-value%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1














I'm going to assume that you want all actual words, not just permutations of the characters with an edit distance of 1 that would include non-words such as "zat".



We can do this using adist() to compute the edit distance between your target word and all eligible English words, taken from some word list. Here, I used the English syllable dictionary from the quanteda package (you did tag this question as quanteda after all) but this could have been any vector of English dictionary words from any other source as well.



To narrow things down, we first exclude all words that are different in length from the target word by your distance value.





distfn <- function(word, distance = 1) 
# select eligible words for efficiency
eligible_y_words <- names(quanteda::data_int_syllables)
wordlengths <- nchar(eligible_y_words)
eligible_y_words <- eligible_y_words[wordlengths >= (nchar(word) - distance) &
wordlengths <= (nchar(word) + distance)]
# compute Levenshtein distance
distances <- utils::adist(word, eligible_y_words)[1, ]
# return only those for the requested distance value
eligible_y_words[distances == distance]


distfn("cat", 1)
## [1] "at" "bat" "ca" "cab" "cac" "cad" "cai" "cal" "cam" "can"
## [11] "cant" "cao" "cap" "caq" "car" "cart" "cas" "cast" "cate" "cato"
## [21] "cats" "catt" "cau" "caw" "cay" "chat" "coat" "cot" "ct" "cut"
## [31] "dat" "eat" "fat" "gat" "hat" "kat" "lat" "mat" "nat" "oat"
## [41] "pat" "rat" "sat" "scat" "tat" "vat" "wat"


To demonstrate how this works on longer words, with alternative distance values.



distfn("coffee", 1)
## [1] "caffee" "coffeen" "coffees" "coffel" "coffer" "coffey" "cuffee"
## [8] "toffee"

distfn("coffee", 2)
## [1] "caffey" "calfee" "chafee" "chaffee" "cofer" "coffee's"
## [7] "coffelt" "coffers" "coffin" "cofide" "cohee" "coiffe"
## [13] "coiffed" "colee" "colfer" "combee" "comfed" "confer"
## [19] "conlee" "coppee" "cottee" "coulee" "coutee" "cuffe"
## [25] "cuffed" "diffee" "duffee" "hoffer" "jaffee" "joffe"
## [31] "mcaffee" "moffet" "noffke" "offen" "offer" "roffe"
## [37] "scoffed" "soffel" "soffer" "yoffie"


(Yes, according to the CMU pronunciation dictionary, those are all actual words...)



EDIT: Make for all permutations of letters, not just actual words



This involves permutations from the alphabet that have the fixed edit distances from the input word. Here I've done it not particular efficiently by forming all permutations of letters within the eligible ranges, and then computing their edit distance from the target word, and then selecting them. So it's a variation of above, except instead of a dictionary, it uses permuted words.



distfn2 <- function(word, distance = 1) 
result <- character()

# start with deletions
for (i in max((nchar(word) - distance), 0):(nchar(word) - 1))
result <- c(
result,
combn(unlist(strsplit(word, "", fixed = TRUE)), i,
paste,
collapse = "", simplify = TRUE
)
)


# now for changes and insertions
for (i in (nchar(word)):(nchar(word) + distance))
# all possible edits
edits <- apply(expand.grid(rep(list(letters), i)),
1, paste0,
collapse = ""
)
# remove original word
edits <- edits[edits != word]
# get all distances, add to result
distances <- utils::adist(word, edits)[1, ]
result <- c(result, edits[distances == distance])


result



For the OP example:



distfn2("cat", 1)
## [1] "ca" "ct" "at" "caa" "cab" "cac" "cad" "cae" "caf" "cag"
## [11] "cah" "cai" "caj" "cak" "cal" "cam" "can" "cao" "cap" "caq"
## [21] "car" "cas" "aat" "bat" "dat" "eat" "fat" "gat" "hat" "iat"
## [31] "jat" "kat" "lat" "mat" "nat" "oat" "pat" "qat" "rat" "sat"
## [41] "tat" "uat" "vat" "wat" "xat" "yat" "zat" "cbt" "cct" "cdt"
## [51] "cet" "cft" "cgt" "cht" "cit" "cjt" "ckt" "clt" "cmt" "cnt"
## [61] "cot" "cpt" "cqt" "crt" "cst" "ctt" "cut" "cvt" "cwt" "cxt"
## [71] "cyt" "czt" "cau" "cav" "caw" "cax" "cay" "caz" "cata" "catb"
## [81] "catc" "catd" "cate" "catf" "catg" "cath" "cati" "catj" "catk" "catl"
## [91] "catm" "catn" "cato" "catp" "catq" "catr" "cats" "caat" "cbat" "acat"
## [101] "bcat" "ccat" "dcat" "ecat" "fcat" "gcat" "hcat" "icat" "jcat" "kcat"
## [111] "lcat" "mcat" "ncat" "ocat" "pcat" "qcat" "rcat" "scat" "tcat" "ucat"
## [121] "vcat" "wcat" "xcat" "ycat" "zcat" "cdat" "ceat" "cfat" "cgat" "chat"
## [131] "ciat" "cjat" "ckat" "clat" "cmat" "cnat" "coat" "cpat" "cqat" "crat"
## [141] "csat" "ctat" "cuat" "cvat" "cwat" "cxat" "cyat" "czat" "cabt" "cact"
## [151] "cadt" "caet" "caft" "cagt" "caht" "cait" "cajt" "cakt" "calt" "camt"
## [161] "cant" "caot" "capt" "caqt" "cart" "cast" "catt" "caut" "cavt" "cawt"
## [171] "caxt" "cayt" "cazt" "catu" "catv" "catw" "catx" "caty" "catz"


Also works with other edit distances, although it becomes very slow for longer words.



d2 <- distfn2("cat", 2)
set.seed(100)
c(head(d2, 50), sample(d2, 50), tail(d2, 50))
## [1] "c" "a" "t" "ca" "ct" "at" "aaa" "baa"
## [9] "daa" "eaa" "faa" "gaa" "haa" "iaa" "jaa" "kaa"
## [17] "laa" "maa" "naa" "oaa" "paa" "qaa" "raa" "saa"
## [25] "taa" "uaa" "vaa" "waa" "xaa" "yaa" "zaa" "cba"
## [33] "aca" "bca" "cca" "dca" "eca" "fca" "gca" "hca"
## [41] "ica" "jca" "kca" "lca" "mca" "nca" "oca" "pca"
## [49] "qca" "rca" "cnts" "cian" "pcatb" "cqo" "uawt" "hazt"
## [57] "cpxat" "aaet" "ckata" "caod" "ncatl" "qcamt" "cdtp" "qajt"
## [65] "bckat" "qcatr" "cqah" "rcbt" "cvbt" "bbcat" "vcaz" "ylcat"
## [73] "cahz" "jcgat" "mant" "jatd" "czlat" "cbamt" "cajta" "cafp"
## [81] "cizt" "cmaut" "qwat" "jcazt" "hdcat" "ucant" "hate" "cajtl"
## [89] "caaty" "cix" "nmat" "cajit" "cmnat" "caobt" "catoi" "ncau"
## [97] "ucoat" "ncamt" "jath" "oats" "chatz" "ciatz" "cjatz" "ckatz"
## [105] "clatz" "cmatz" "cnatz" "coatz" "cpatz" "cqatz" "cratz" "csatz"
## [113] "ctatz" "cuatz" "cvatz" "cwatz" "cxatz" "cyatz" "czatz" "cabtz"
## [121] "cactz" "cadtz" "caetz" "caftz" "cagtz" "cahtz" "caitz" "cajtz"
## [129] "caktz" "caltz" "camtz" "cantz" "caotz" "captz" "caqtz" "cartz"
## [137] "castz" "cattz" "cautz" "cavtz" "cawtz" "caxtz" "caytz" "caztz"
## [145] "catuz" "catvz" "catwz" "catxz" "catyz" "catzz"


This could be speeded up by less brute force formation of all permutations and then applying adist() to them - it could consist of changes or insertions of known edit distances generated algorithmically from letters.






share|improve this answer

























  • Thank you very much for your effort! But I am searching for all possible combinations (permutations) ...

    – De De
    Mar 27 at 14:58











  • OK I added that.

    – Ken Benoit
    Mar 28 at 16:46











  • Many thanks for your support!

    – De De
    Apr 4 at 16:47















1














I'm going to assume that you want all actual words, not just permutations of the characters with an edit distance of 1 that would include non-words such as "zat".



We can do this using adist() to compute the edit distance between your target word and all eligible English words, taken from some word list. Here, I used the English syllable dictionary from the quanteda package (you did tag this question as quanteda after all) but this could have been any vector of English dictionary words from any other source as well.



To narrow things down, we first exclude all words that are different in length from the target word by your distance value.





distfn <- function(word, distance = 1) 
# select eligible words for efficiency
eligible_y_words <- names(quanteda::data_int_syllables)
wordlengths <- nchar(eligible_y_words)
eligible_y_words <- eligible_y_words[wordlengths >= (nchar(word) - distance) &
wordlengths <= (nchar(word) + distance)]
# compute Levenshtein distance
distances <- utils::adist(word, eligible_y_words)[1, ]
# return only those for the requested distance value
eligible_y_words[distances == distance]


distfn("cat", 1)
## [1] "at" "bat" "ca" "cab" "cac" "cad" "cai" "cal" "cam" "can"
## [11] "cant" "cao" "cap" "caq" "car" "cart" "cas" "cast" "cate" "cato"
## [21] "cats" "catt" "cau" "caw" "cay" "chat" "coat" "cot" "ct" "cut"
## [31] "dat" "eat" "fat" "gat" "hat" "kat" "lat" "mat" "nat" "oat"
## [41] "pat" "rat" "sat" "scat" "tat" "vat" "wat"


To demonstrate how this works on longer words, with alternative distance values.



distfn("coffee", 1)
## [1] "caffee" "coffeen" "coffees" "coffel" "coffer" "coffey" "cuffee"
## [8] "toffee"

distfn("coffee", 2)
## [1] "caffey" "calfee" "chafee" "chaffee" "cofer" "coffee's"
## [7] "coffelt" "coffers" "coffin" "cofide" "cohee" "coiffe"
## [13] "coiffed" "colee" "colfer" "combee" "comfed" "confer"
## [19] "conlee" "coppee" "cottee" "coulee" "coutee" "cuffe"
## [25] "cuffed" "diffee" "duffee" "hoffer" "jaffee" "joffe"
## [31] "mcaffee" "moffet" "noffke" "offen" "offer" "roffe"
## [37] "scoffed" "soffel" "soffer" "yoffie"


(Yes, according to the CMU pronunciation dictionary, those are all actual words...)



EDIT: Make for all permutations of letters, not just actual words



This involves permutations from the alphabet that have the fixed edit distances from the input word. Here I've done it not particular efficiently by forming all permutations of letters within the eligible ranges, and then computing their edit distance from the target word, and then selecting them. So it's a variation of above, except instead of a dictionary, it uses permuted words.



distfn2 <- function(word, distance = 1) 
result <- character()

# start with deletions
for (i in max((nchar(word) - distance), 0):(nchar(word) - 1))
result <- c(
result,
combn(unlist(strsplit(word, "", fixed = TRUE)), i,
paste,
collapse = "", simplify = TRUE
)
)


# now for changes and insertions
for (i in (nchar(word)):(nchar(word) + distance))
# all possible edits
edits <- apply(expand.grid(rep(list(letters), i)),
1, paste0,
collapse = ""
)
# remove original word
edits <- edits[edits != word]
# get all distances, add to result
distances <- utils::adist(word, edits)[1, ]
result <- c(result, edits[distances == distance])


result



For the OP example:



distfn2("cat", 1)
## [1] "ca" "ct" "at" "caa" "cab" "cac" "cad" "cae" "caf" "cag"
## [11] "cah" "cai" "caj" "cak" "cal" "cam" "can" "cao" "cap" "caq"
## [21] "car" "cas" "aat" "bat" "dat" "eat" "fat" "gat" "hat" "iat"
## [31] "jat" "kat" "lat" "mat" "nat" "oat" "pat" "qat" "rat" "sat"
## [41] "tat" "uat" "vat" "wat" "xat" "yat" "zat" "cbt" "cct" "cdt"
## [51] "cet" "cft" "cgt" "cht" "cit" "cjt" "ckt" "clt" "cmt" "cnt"
## [61] "cot" "cpt" "cqt" "crt" "cst" "ctt" "cut" "cvt" "cwt" "cxt"
## [71] "cyt" "czt" "cau" "cav" "caw" "cax" "cay" "caz" "cata" "catb"
## [81] "catc" "catd" "cate" "catf" "catg" "cath" "cati" "catj" "catk" "catl"
## [91] "catm" "catn" "cato" "catp" "catq" "catr" "cats" "caat" "cbat" "acat"
## [101] "bcat" "ccat" "dcat" "ecat" "fcat" "gcat" "hcat" "icat" "jcat" "kcat"
## [111] "lcat" "mcat" "ncat" "ocat" "pcat" "qcat" "rcat" "scat" "tcat" "ucat"
## [121] "vcat" "wcat" "xcat" "ycat" "zcat" "cdat" "ceat" "cfat" "cgat" "chat"
## [131] "ciat" "cjat" "ckat" "clat" "cmat" "cnat" "coat" "cpat" "cqat" "crat"
## [141] "csat" "ctat" "cuat" "cvat" "cwat" "cxat" "cyat" "czat" "cabt" "cact"
## [151] "cadt" "caet" "caft" "cagt" "caht" "cait" "cajt" "cakt" "calt" "camt"
## [161] "cant" "caot" "capt" "caqt" "cart" "cast" "catt" "caut" "cavt" "cawt"
## [171] "caxt" "cayt" "cazt" "catu" "catv" "catw" "catx" "caty" "catz"


Also works with other edit distances, although it becomes very slow for longer words.



d2 <- distfn2("cat", 2)
set.seed(100)
c(head(d2, 50), sample(d2, 50), tail(d2, 50))
## [1] "c" "a" "t" "ca" "ct" "at" "aaa" "baa"
## [9] "daa" "eaa" "faa" "gaa" "haa" "iaa" "jaa" "kaa"
## [17] "laa" "maa" "naa" "oaa" "paa" "qaa" "raa" "saa"
## [25] "taa" "uaa" "vaa" "waa" "xaa" "yaa" "zaa" "cba"
## [33] "aca" "bca" "cca" "dca" "eca" "fca" "gca" "hca"
## [41] "ica" "jca" "kca" "lca" "mca" "nca" "oca" "pca"
## [49] "qca" "rca" "cnts" "cian" "pcatb" "cqo" "uawt" "hazt"
## [57] "cpxat" "aaet" "ckata" "caod" "ncatl" "qcamt" "cdtp" "qajt"
## [65] "bckat" "qcatr" "cqah" "rcbt" "cvbt" "bbcat" "vcaz" "ylcat"
## [73] "cahz" "jcgat" "mant" "jatd" "czlat" "cbamt" "cajta" "cafp"
## [81] "cizt" "cmaut" "qwat" "jcazt" "hdcat" "ucant" "hate" "cajtl"
## [89] "caaty" "cix" "nmat" "cajit" "cmnat" "caobt" "catoi" "ncau"
## [97] "ucoat" "ncamt" "jath" "oats" "chatz" "ciatz" "cjatz" "ckatz"
## [105] "clatz" "cmatz" "cnatz" "coatz" "cpatz" "cqatz" "cratz" "csatz"
## [113] "ctatz" "cuatz" "cvatz" "cwatz" "cxatz" "cyatz" "czatz" "cabtz"
## [121] "cactz" "cadtz" "caetz" "caftz" "cagtz" "cahtz" "caitz" "cajtz"
## [129] "caktz" "caltz" "camtz" "cantz" "caotz" "captz" "caqtz" "cartz"
## [137] "castz" "cattz" "cautz" "cavtz" "cawtz" "caxtz" "caytz" "caztz"
## [145] "catuz" "catvz" "catwz" "catxz" "catyz" "catzz"


This could be speeded up by less brute force formation of all permutations and then applying adist() to them - it could consist of changes or insertions of known edit distances generated algorithmically from letters.






share|improve this answer

























  • Thank you very much for your effort! But I am searching for all possible combinations (permutations) ...

    – De De
    Mar 27 at 14:58











  • OK I added that.

    – Ken Benoit
    Mar 28 at 16:46











  • Many thanks for your support!

    – De De
    Apr 4 at 16:47













1












1








1







I'm going to assume that you want all actual words, not just permutations of the characters with an edit distance of 1 that would include non-words such as "zat".



We can do this using adist() to compute the edit distance between your target word and all eligible English words, taken from some word list. Here, I used the English syllable dictionary from the quanteda package (you did tag this question as quanteda after all) but this could have been any vector of English dictionary words from any other source as well.



To narrow things down, we first exclude all words that are different in length from the target word by your distance value.





distfn <- function(word, distance = 1) 
# select eligible words for efficiency
eligible_y_words <- names(quanteda::data_int_syllables)
wordlengths <- nchar(eligible_y_words)
eligible_y_words <- eligible_y_words[wordlengths >= (nchar(word) - distance) &
wordlengths <= (nchar(word) + distance)]
# compute Levenshtein distance
distances <- utils::adist(word, eligible_y_words)[1, ]
# return only those for the requested distance value
eligible_y_words[distances == distance]


distfn("cat", 1)
## [1] "at" "bat" "ca" "cab" "cac" "cad" "cai" "cal" "cam" "can"
## [11] "cant" "cao" "cap" "caq" "car" "cart" "cas" "cast" "cate" "cato"
## [21] "cats" "catt" "cau" "caw" "cay" "chat" "coat" "cot" "ct" "cut"
## [31] "dat" "eat" "fat" "gat" "hat" "kat" "lat" "mat" "nat" "oat"
## [41] "pat" "rat" "sat" "scat" "tat" "vat" "wat"


To demonstrate how this works on longer words, with alternative distance values.



distfn("coffee", 1)
## [1] "caffee" "coffeen" "coffees" "coffel" "coffer" "coffey" "cuffee"
## [8] "toffee"

distfn("coffee", 2)
## [1] "caffey" "calfee" "chafee" "chaffee" "cofer" "coffee's"
## [7] "coffelt" "coffers" "coffin" "cofide" "cohee" "coiffe"
## [13] "coiffed" "colee" "colfer" "combee" "comfed" "confer"
## [19] "conlee" "coppee" "cottee" "coulee" "coutee" "cuffe"
## [25] "cuffed" "diffee" "duffee" "hoffer" "jaffee" "joffe"
## [31] "mcaffee" "moffet" "noffke" "offen" "offer" "roffe"
## [37] "scoffed" "soffel" "soffer" "yoffie"


(Yes, according to the CMU pronunciation dictionary, those are all actual words...)



EDIT: Make for all permutations of letters, not just actual words



This involves permutations from the alphabet that have the fixed edit distances from the input word. Here I've done it not particular efficiently by forming all permutations of letters within the eligible ranges, and then computing their edit distance from the target word, and then selecting them. So it's a variation of above, except instead of a dictionary, it uses permuted words.



distfn2 <- function(word, distance = 1) 
result <- character()

# start with deletions
for (i in max((nchar(word) - distance), 0):(nchar(word) - 1))
result <- c(
result,
combn(unlist(strsplit(word, "", fixed = TRUE)), i,
paste,
collapse = "", simplify = TRUE
)
)


# now for changes and insertions
for (i in (nchar(word)):(nchar(word) + distance))
# all possible edits
edits <- apply(expand.grid(rep(list(letters), i)),
1, paste0,
collapse = ""
)
# remove original word
edits <- edits[edits != word]
# get all distances, add to result
distances <- utils::adist(word, edits)[1, ]
result <- c(result, edits[distances == distance])


result



For the OP example:



distfn2("cat", 1)
## [1] "ca" "ct" "at" "caa" "cab" "cac" "cad" "cae" "caf" "cag"
## [11] "cah" "cai" "caj" "cak" "cal" "cam" "can" "cao" "cap" "caq"
## [21] "car" "cas" "aat" "bat" "dat" "eat" "fat" "gat" "hat" "iat"
## [31] "jat" "kat" "lat" "mat" "nat" "oat" "pat" "qat" "rat" "sat"
## [41] "tat" "uat" "vat" "wat" "xat" "yat" "zat" "cbt" "cct" "cdt"
## [51] "cet" "cft" "cgt" "cht" "cit" "cjt" "ckt" "clt" "cmt" "cnt"
## [61] "cot" "cpt" "cqt" "crt" "cst" "ctt" "cut" "cvt" "cwt" "cxt"
## [71] "cyt" "czt" "cau" "cav" "caw" "cax" "cay" "caz" "cata" "catb"
## [81] "catc" "catd" "cate" "catf" "catg" "cath" "cati" "catj" "catk" "catl"
## [91] "catm" "catn" "cato" "catp" "catq" "catr" "cats" "caat" "cbat" "acat"
## [101] "bcat" "ccat" "dcat" "ecat" "fcat" "gcat" "hcat" "icat" "jcat" "kcat"
## [111] "lcat" "mcat" "ncat" "ocat" "pcat" "qcat" "rcat" "scat" "tcat" "ucat"
## [121] "vcat" "wcat" "xcat" "ycat" "zcat" "cdat" "ceat" "cfat" "cgat" "chat"
## [131] "ciat" "cjat" "ckat" "clat" "cmat" "cnat" "coat" "cpat" "cqat" "crat"
## [141] "csat" "ctat" "cuat" "cvat" "cwat" "cxat" "cyat" "czat" "cabt" "cact"
## [151] "cadt" "caet" "caft" "cagt" "caht" "cait" "cajt" "cakt" "calt" "camt"
## [161] "cant" "caot" "capt" "caqt" "cart" "cast" "catt" "caut" "cavt" "cawt"
## [171] "caxt" "cayt" "cazt" "catu" "catv" "catw" "catx" "caty" "catz"


Also works with other edit distances, although it becomes very slow for longer words.



d2 <- distfn2("cat", 2)
set.seed(100)
c(head(d2, 50), sample(d2, 50), tail(d2, 50))
## [1] "c" "a" "t" "ca" "ct" "at" "aaa" "baa"
## [9] "daa" "eaa" "faa" "gaa" "haa" "iaa" "jaa" "kaa"
## [17] "laa" "maa" "naa" "oaa" "paa" "qaa" "raa" "saa"
## [25] "taa" "uaa" "vaa" "waa" "xaa" "yaa" "zaa" "cba"
## [33] "aca" "bca" "cca" "dca" "eca" "fca" "gca" "hca"
## [41] "ica" "jca" "kca" "lca" "mca" "nca" "oca" "pca"
## [49] "qca" "rca" "cnts" "cian" "pcatb" "cqo" "uawt" "hazt"
## [57] "cpxat" "aaet" "ckata" "caod" "ncatl" "qcamt" "cdtp" "qajt"
## [65] "bckat" "qcatr" "cqah" "rcbt" "cvbt" "bbcat" "vcaz" "ylcat"
## [73] "cahz" "jcgat" "mant" "jatd" "czlat" "cbamt" "cajta" "cafp"
## [81] "cizt" "cmaut" "qwat" "jcazt" "hdcat" "ucant" "hate" "cajtl"
## [89] "caaty" "cix" "nmat" "cajit" "cmnat" "caobt" "catoi" "ncau"
## [97] "ucoat" "ncamt" "jath" "oats" "chatz" "ciatz" "cjatz" "ckatz"
## [105] "clatz" "cmatz" "cnatz" "coatz" "cpatz" "cqatz" "cratz" "csatz"
## [113] "ctatz" "cuatz" "cvatz" "cwatz" "cxatz" "cyatz" "czatz" "cabtz"
## [121] "cactz" "cadtz" "caetz" "caftz" "cagtz" "cahtz" "caitz" "cajtz"
## [129] "caktz" "caltz" "camtz" "cantz" "caotz" "captz" "caqtz" "cartz"
## [137] "castz" "cattz" "cautz" "cavtz" "cawtz" "caxtz" "caytz" "caztz"
## [145] "catuz" "catvz" "catwz" "catxz" "catyz" "catzz"


This could be speeded up by less brute force formation of all permutations and then applying adist() to them - it could consist of changes or insertions of known edit distances generated algorithmically from letters.






share|improve this answer















I'm going to assume that you want all actual words, not just permutations of the characters with an edit distance of 1 that would include non-words such as "zat".



We can do this using adist() to compute the edit distance between your target word and all eligible English words, taken from some word list. Here, I used the English syllable dictionary from the quanteda package (you did tag this question as quanteda after all) but this could have been any vector of English dictionary words from any other source as well.



To narrow things down, we first exclude all words that are different in length from the target word by your distance value.





distfn <- function(word, distance = 1) 
# select eligible words for efficiency
eligible_y_words <- names(quanteda::data_int_syllables)
wordlengths <- nchar(eligible_y_words)
eligible_y_words <- eligible_y_words[wordlengths >= (nchar(word) - distance) &
wordlengths <= (nchar(word) + distance)]
# compute Levenshtein distance
distances <- utils::adist(word, eligible_y_words)[1, ]
# return only those for the requested distance value
eligible_y_words[distances == distance]


distfn("cat", 1)
## [1] "at" "bat" "ca" "cab" "cac" "cad" "cai" "cal" "cam" "can"
## [11] "cant" "cao" "cap" "caq" "car" "cart" "cas" "cast" "cate" "cato"
## [21] "cats" "catt" "cau" "caw" "cay" "chat" "coat" "cot" "ct" "cut"
## [31] "dat" "eat" "fat" "gat" "hat" "kat" "lat" "mat" "nat" "oat"
## [41] "pat" "rat" "sat" "scat" "tat" "vat" "wat"


To demonstrate how this works on longer words, with alternative distance values.



distfn("coffee", 1)
## [1] "caffee" "coffeen" "coffees" "coffel" "coffer" "coffey" "cuffee"
## [8] "toffee"

distfn("coffee", 2)
## [1] "caffey" "calfee" "chafee" "chaffee" "cofer" "coffee's"
## [7] "coffelt" "coffers" "coffin" "cofide" "cohee" "coiffe"
## [13] "coiffed" "colee" "colfer" "combee" "comfed" "confer"
## [19] "conlee" "coppee" "cottee" "coulee" "coutee" "cuffe"
## [25] "cuffed" "diffee" "duffee" "hoffer" "jaffee" "joffe"
## [31] "mcaffee" "moffet" "noffke" "offen" "offer" "roffe"
## [37] "scoffed" "soffel" "soffer" "yoffie"


(Yes, according to the CMU pronunciation dictionary, those are all actual words...)



EDIT: Make for all permutations of letters, not just actual words



This involves permutations from the alphabet that have the fixed edit distances from the input word. Here I've done it not particular efficiently by forming all permutations of letters within the eligible ranges, and then computing their edit distance from the target word, and then selecting them. So it's a variation of above, except instead of a dictionary, it uses permuted words.



distfn2 <- function(word, distance = 1) 
result <- character()

# start with deletions
for (i in max((nchar(word) - distance), 0):(nchar(word) - 1))
result <- c(
result,
combn(unlist(strsplit(word, "", fixed = TRUE)), i,
paste,
collapse = "", simplify = TRUE
)
)


# now for changes and insertions
for (i in (nchar(word)):(nchar(word) + distance))
# all possible edits
edits <- apply(expand.grid(rep(list(letters), i)),
1, paste0,
collapse = ""
)
# remove original word
edits <- edits[edits != word]
# get all distances, add to result
distances <- utils::adist(word, edits)[1, ]
result <- c(result, edits[distances == distance])


result



For the OP example:



distfn2("cat", 1)
## [1] "ca" "ct" "at" "caa" "cab" "cac" "cad" "cae" "caf" "cag"
## [11] "cah" "cai" "caj" "cak" "cal" "cam" "can" "cao" "cap" "caq"
## [21] "car" "cas" "aat" "bat" "dat" "eat" "fat" "gat" "hat" "iat"
## [31] "jat" "kat" "lat" "mat" "nat" "oat" "pat" "qat" "rat" "sat"
## [41] "tat" "uat" "vat" "wat" "xat" "yat" "zat" "cbt" "cct" "cdt"
## [51] "cet" "cft" "cgt" "cht" "cit" "cjt" "ckt" "clt" "cmt" "cnt"
## [61] "cot" "cpt" "cqt" "crt" "cst" "ctt" "cut" "cvt" "cwt" "cxt"
## [71] "cyt" "czt" "cau" "cav" "caw" "cax" "cay" "caz" "cata" "catb"
## [81] "catc" "catd" "cate" "catf" "catg" "cath" "cati" "catj" "catk" "catl"
## [91] "catm" "catn" "cato" "catp" "catq" "catr" "cats" "caat" "cbat" "acat"
## [101] "bcat" "ccat" "dcat" "ecat" "fcat" "gcat" "hcat" "icat" "jcat" "kcat"
## [111] "lcat" "mcat" "ncat" "ocat" "pcat" "qcat" "rcat" "scat" "tcat" "ucat"
## [121] "vcat" "wcat" "xcat" "ycat" "zcat" "cdat" "ceat" "cfat" "cgat" "chat"
## [131] "ciat" "cjat" "ckat" "clat" "cmat" "cnat" "coat" "cpat" "cqat" "crat"
## [141] "csat" "ctat" "cuat" "cvat" "cwat" "cxat" "cyat" "czat" "cabt" "cact"
## [151] "cadt" "caet" "caft" "cagt" "caht" "cait" "cajt" "cakt" "calt" "camt"
## [161] "cant" "caot" "capt" "caqt" "cart" "cast" "catt" "caut" "cavt" "cawt"
## [171] "caxt" "cayt" "cazt" "catu" "catv" "catw" "catx" "caty" "catz"


Also works with other edit distances, although it becomes very slow for longer words.



d2 <- distfn2("cat", 2)
set.seed(100)
c(head(d2, 50), sample(d2, 50), tail(d2, 50))
## [1] "c" "a" "t" "ca" "ct" "at" "aaa" "baa"
## [9] "daa" "eaa" "faa" "gaa" "haa" "iaa" "jaa" "kaa"
## [17] "laa" "maa" "naa" "oaa" "paa" "qaa" "raa" "saa"
## [25] "taa" "uaa" "vaa" "waa" "xaa" "yaa" "zaa" "cba"
## [33] "aca" "bca" "cca" "dca" "eca" "fca" "gca" "hca"
## [41] "ica" "jca" "kca" "lca" "mca" "nca" "oca" "pca"
## [49] "qca" "rca" "cnts" "cian" "pcatb" "cqo" "uawt" "hazt"
## [57] "cpxat" "aaet" "ckata" "caod" "ncatl" "qcamt" "cdtp" "qajt"
## [65] "bckat" "qcatr" "cqah" "rcbt" "cvbt" "bbcat" "vcaz" "ylcat"
## [73] "cahz" "jcgat" "mant" "jatd" "czlat" "cbamt" "cajta" "cafp"
## [81] "cizt" "cmaut" "qwat" "jcazt" "hdcat" "ucant" "hate" "cajtl"
## [89] "caaty" "cix" "nmat" "cajit" "cmnat" "caobt" "catoi" "ncau"
## [97] "ucoat" "ncamt" "jath" "oats" "chatz" "ciatz" "cjatz" "ckatz"
## [105] "clatz" "cmatz" "cnatz" "coatz" "cpatz" "cqatz" "cratz" "csatz"
## [113] "ctatz" "cuatz" "cvatz" "cwatz" "cxatz" "cyatz" "czatz" "cabtz"
## [121] "cactz" "cadtz" "caetz" "caftz" "cagtz" "cahtz" "caitz" "cajtz"
## [129] "caktz" "caltz" "camtz" "cantz" "caotz" "captz" "caqtz" "cartz"
## [137] "castz" "cattz" "cautz" "cavtz" "cawtz" "caxtz" "caytz" "caztz"
## [145] "catuz" "catvz" "catwz" "catxz" "catyz" "catzz"


This could be speeded up by less brute force formation of all permutations and then applying adist() to them - it could consist of changes or insertions of known edit distances generated algorithmically from letters.







share|improve this answer














share|improve this answer



share|improve this answer








edited Mar 28 at 16:46

























answered Mar 26 at 23:06









Ken BenoitKen Benoit

8,19317 silver badges36 bronze badges




8,19317 silver badges36 bronze badges












  • Thank you very much for your effort! But I am searching for all possible combinations (permutations) ...

    – De De
    Mar 27 at 14:58











  • OK I added that.

    – Ken Benoit
    Mar 28 at 16:46











  • Many thanks for your support!

    – De De
    Apr 4 at 16:47

















  • Thank you very much for your effort! But I am searching for all possible combinations (permutations) ...

    – De De
    Mar 27 at 14:58











  • OK I added that.

    – Ken Benoit
    Mar 28 at 16:46











  • Many thanks for your support!

    – De De
    Apr 4 at 16:47
















Thank you very much for your effort! But I am searching for all possible combinations (permutations) ...

– De De
Mar 27 at 14:58





Thank you very much for your effort! But I am searching for all possible combinations (permutations) ...

– De De
Mar 27 at 14:58













OK I added that.

– Ken Benoit
Mar 28 at 16:46





OK I added that.

– Ken Benoit
Mar 28 at 16:46













Many thanks for your support!

– De De
Apr 4 at 16:47





Many thanks for your support!

– De De
Apr 4 at 16:47








Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.







Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.



















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55352498%2fhow-to-output-in-r-all-possible-deviations-of-a-word-for-a-fixed-distance-value%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

Swift 4 - func physicsWorld not invoked on collision? The Next CEO of Stack OverflowHow to call Objective-C code from Swift#ifdef replacement in the Swift language@selector() in Swift?#pragma mark in Swift?Swift for loop: for index, element in array?dispatch_after - GCD in Swift?Swift Beta performance: sorting arraysSplit a String into an array in Swift?The use of Swift 3 @objc inference in Swift 4 mode is deprecated?How to optimize UITableViewCell, because my UITableView lags

Access current req object everywhere in Node.js ExpressWhy are global variables considered bad practice? (node.js)Using req & res across functionsHow do I get the path to the current script with Node.js?What is Node.js' Connect, Express and “middleware”?Node.js w/ express error handling in callbackHow to access the GET parameters after “?” in Express?Modify Node.js req object parametersAccess “app” variable inside of ExpressJS/ConnectJS middleware?Node.js Express app - request objectAngular Http Module considered middleware?Session variables in ExpressJSAdd properties to the req object in expressjs with Typescript