Issue pivoting a DataFrame - python - ValueError: Length of passed values is X index implies YSet value for particular cell in pandas DataFrame using indexIndex contains multiples value dataframe pivotsConstructing pandas DataFrame from values in variables gives “ValueError: If using all scalar values, you must pass an index”Stack and Pivot Dataframe in PythonPandas: ValueError when pivoting dataframe with MultiIndexHow to pivot a set of multiple columns into a set of flagged values through DataFrame while not wanting to pivot all columnsreorder multi index dataframe with pivotPython pivot DataFrame without index columnsPython pivot dataframe valuesPivot dataframe in Python

Chilling water in copper vessel

Findminimum of Integral

Mtg creature spells, instants, priority?

Would denouncing cheaters from an exam make me less likely to receive penalties?

Strong Password Detection in Python

Did depressed people far more accurately estimate how many monsters they killed in a video game?

When do flights get cancelled due to fog?

What are the consequences for a developed nation to not accept any refugees?

QR codes, do people use them?

How to use Adostop Eco stop bath?

What was the profession 芸者 (female entertainer) called in Russia?

Passwordless authentication - how and when to invalidate a login code

Four ships at the ocean with the same distance

Is there a method for differentiating informative comments from commented out code?

Gaining Proficiency in Vehicles (water)

Delete elements less than the last largest element

Other Space Shuttle O-ring failures

Is it okay to use open source code to do an interview task?

What term do you use for someone who acts impulsively?

Test Driven Development Roman Numerals php

What is the relationship between external and internal composition in a cartesian closed category?

Can the word "desk" be used as a verb?

What are the effects of abstaining from eating a certain flavor?

Sense of humor in your sci-fi stories



Issue pivoting a DataFrame - python - ValueError: Length of passed values is X index implies Y


Set value for particular cell in pandas DataFrame using indexIndex contains multiples value dataframe pivotsConstructing pandas DataFrame from values in variables gives “ValueError: If using all scalar values, you must pass an index”Stack and Pivot Dataframe in PythonPandas: ValueError when pivoting dataframe with MultiIndexHow to pivot a set of multiple columns into a set of flagged values through DataFrame while not wanting to pivot all columnsreorder multi index dataframe with pivotPython pivot DataFrame without index columnsPython pivot dataframe valuesPivot dataframe in Python






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








0















I am trying to reshape a pandas data frame that I previously melted. The problem is that in the var_name part are repeating names that I would like to have as columns.



This is how it looks like at the moment as an example:



+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
| Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | judgements |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - First Click | 12.085 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - First Click | 10.777 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Last Click | 12.085 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Last Click | 10.777 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Page Submit | 12.899 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Page Submit | 11.906 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Click Count | 1 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Click Count | 1 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 8 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 7 |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+


*please note: this a shortened version - as shown in the code below there are more columns.



And this is what I would like to have in the end based an previous example:



+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
| Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | Timing - First Click | Timing - Last Click | Timing - Page Submit | Timing - Click Count | judgements |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
| 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 12.085 | 12.085 | 12.899 | 1 | 8 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 10.777 | 10.777 | 11.906 | 1 | 7 |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+


*also the number of tweets in the "category" column more than 1000.



I thought I could use pivot to get all tweets first as column, but Timing - First Click, Timing - Last Click, Timing - Page Submit, Timing - Click Count would get in the shape I want and then I just melt them down again while specifying those 4 Timing related columns as id_vars to remain in their shape. But I don't even get that far - pivoting doesn't work:



#first melt
df_clean = pd.melt(df,
id_vars=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
'Q4_level_of_study_other',
'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
'Q11_IELTS_test_result',
'Q12_twitter_usage', 'Valdidation'], var_name='categories', value_name='judgements')
#clear for empty judgements
df_wo_na = df_clean.dropna(subset=['judgements'])

#pivot
df_p = df_wo_na.pivot(index=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
'Q4_level_of_study_other',
'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
'Q11_IELTS_test_result',
'Q12_twitter_usage', 'Valdidation'], columns='categories', values='judgements')


So this is where I fail and it gets me an Error.
ValueError: Length of passed values is 5202, index implies 16



Has anyone has an idea how to solve this?



Thank you in advance










share|improve this question




























    0















    I am trying to reshape a pandas data frame that I previously melted. The problem is that in the var_name part are repeating names that I would like to have as columns.



    This is how it looks like at the moment as an example:



    +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
    | Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | judgements |
    +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
    | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - First Click | 12.085 |
    | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - First Click | 10.777 |
    | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Last Click | 12.085 |
    | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Last Click | 10.777 |
    | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Page Submit | 12.899 |
    | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Page Submit | 11.906 |
    | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Click Count | 1 |
    | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Click Count | 1 |
    | 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 8 |
    | 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 7 |
    +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+


    *please note: this a shortened version - as shown in the code below there are more columns.



    And this is what I would like to have in the end based an previous example:



    +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
    | Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | Timing - First Click | Timing - Last Click | Timing - Page Submit | Timing - Click Count | judgements |
    +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
    | 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 12.085 | 12.085 | 12.899 | 1 | 8 |
    | 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 10.777 | 10.777 | 11.906 | 1 | 7 |
    +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+


    *also the number of tweets in the "category" column more than 1000.



    I thought I could use pivot to get all tweets first as column, but Timing - First Click, Timing - Last Click, Timing - Page Submit, Timing - Click Count would get in the shape I want and then I just melt them down again while specifying those 4 Timing related columns as id_vars to remain in their shape. But I don't even get that far - pivoting doesn't work:



    #first melt
    df_clean = pd.melt(df,
    id_vars=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
    'Q4_level_of_study_other',
    'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
    'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
    'Q11_IELTS_test_result',
    'Q12_twitter_usage', 'Valdidation'], var_name='categories', value_name='judgements')
    #clear for empty judgements
    df_wo_na = df_clean.dropna(subset=['judgements'])

    #pivot
    df_p = df_wo_na.pivot(index=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
    'Q4_level_of_study_other',
    'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
    'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
    'Q11_IELTS_test_result',
    'Q12_twitter_usage', 'Valdidation'], columns='categories', values='judgements')


    So this is where I fail and it gets me an Error.
    ValueError: Length of passed values is 5202, index implies 16



    Has anyone has an idea how to solve this?



    Thank you in advance










    share|improve this question
























      0












      0








      0








      I am trying to reshape a pandas data frame that I previously melted. The problem is that in the var_name part are repeating names that I would like to have as columns.



      This is how it looks like at the moment as an example:



      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
      | Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | judgements |
      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - First Click | 12.085 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - First Click | 10.777 |
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Last Click | 12.085 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Last Click | 10.777 |
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Page Submit | 12.899 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Page Submit | 11.906 |
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Click Count | 1 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Click Count | 1 |
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 8 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 7 |
      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+


      *please note: this a shortened version - as shown in the code below there are more columns.



      And this is what I would like to have in the end based an previous example:



      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
      | Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | Timing - First Click | Timing - Last Click | Timing - Page Submit | Timing - Click Count | judgements |
      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 12.085 | 12.085 | 12.899 | 1 | 8 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 10.777 | 10.777 | 11.906 | 1 | 7 |
      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+


      *also the number of tweets in the "category" column more than 1000.



      I thought I could use pivot to get all tweets first as column, but Timing - First Click, Timing - Last Click, Timing - Page Submit, Timing - Click Count would get in the shape I want and then I just melt them down again while specifying those 4 Timing related columns as id_vars to remain in their shape. But I don't even get that far - pivoting doesn't work:



      #first melt
      df_clean = pd.melt(df,
      id_vars=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
      'Q4_level_of_study_other',
      'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
      'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
      'Q11_IELTS_test_result',
      'Q12_twitter_usage', 'Valdidation'], var_name='categories', value_name='judgements')
      #clear for empty judgements
      df_wo_na = df_clean.dropna(subset=['judgements'])

      #pivot
      df_p = df_wo_na.pivot(index=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
      'Q4_level_of_study_other',
      'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
      'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
      'Q11_IELTS_test_result',
      'Q12_twitter_usage', 'Valdidation'], columns='categories', values='judgements')


      So this is where I fail and it gets me an Error.
      ValueError: Length of passed values is 5202, index implies 16



      Has anyone has an idea how to solve this?



      Thank you in advance










      share|improve this question














      I am trying to reshape a pandas data frame that I previously melted. The problem is that in the var_name part are repeating names that I would like to have as columns.



      This is how it looks like at the moment as an example:



      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
      | Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | judgements |
      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - First Click | 12.085 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - First Click | 10.777 |
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Last Click | 12.085 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Last Click | 10.777 |
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Page Submit | 12.899 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Page Submit | 11.906 |
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Click Count | 1 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Click Count | 1 |
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 8 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 7 |
      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+


      *please note: this a shortened version - as shown in the code below there are more columns.



      And this is what I would like to have in the end based an previous example:



      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
      | Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | Timing - First Click | Timing - Last Click | Timing - Page Submit | Timing - Click Count | judgements |
      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
      | 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 12.085 | 12.085 | 12.899 | 1 | 8 |
      | 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 10.777 | 10.777 | 11.906 | 1 | 7 |
      +-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+


      *also the number of tweets in the "category" column more than 1000.



      I thought I could use pivot to get all tweets first as column, but Timing - First Click, Timing - Last Click, Timing - Page Submit, Timing - Click Count would get in the shape I want and then I just melt them down again while specifying those 4 Timing related columns as id_vars to remain in their shape. But I don't even get that far - pivoting doesn't work:



      #first melt
      df_clean = pd.melt(df,
      id_vars=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
      'Q4_level_of_study_other',
      'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
      'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
      'Q11_IELTS_test_result',
      'Q12_twitter_usage', 'Valdidation'], var_name='categories', value_name='judgements')
      #clear for empty judgements
      df_wo_na = df_clean.dropna(subset=['judgements'])

      #pivot
      df_p = df_wo_na.pivot(index=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
      'Q4_level_of_study_other',
      'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
      'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
      'Q11_IELTS_test_result',
      'Q12_twitter_usage', 'Valdidation'], columns='categories', values='judgements')


      So this is where I fail and it gets me an Error.
      ValueError: Length of passed values is 5202, index implies 16



      Has anyone has an idea how to solve this?



      Thank you in advance







      python dataframe stack pivot melt






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Mar 25 at 22:35









      Patrick JacobPatrick Jacob

      33 bronze badges




      33 bronze badges






















          0






          active

          oldest

          votes










          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55347369%2fissue-pivoting-a-dataframe-python-valueerror-length-of-passed-values-is-x-i%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes




          Is this question similar to what you get asked at work? Learn more about asking and sharing private information with your coworkers using Stack Overflow for Teams.







          Is this question similar to what you get asked at work? Learn more about asking and sharing private information with your coworkers using Stack Overflow for Teams.



















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55347369%2fissue-pivoting-a-dataframe-python-valueerror-length-of-passed-values-is-x-i%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

          SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

          은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현