Issue pivoting a DataFrame - python - ValueError: Length of passed values is X index implies YSet value for particular cell in pandas DataFrame using indexIndex contains multiples value dataframe pivotsConstructing pandas DataFrame from values in variables gives “ValueError: If using all scalar values, you must pass an index”Stack and Pivot Dataframe in PythonPandas: ValueError when pivoting dataframe with MultiIndexHow to pivot a set of multiple columns into a set of flagged values through DataFrame while not wanting to pivot all columnsreorder multi index dataframe with pivotPython pivot DataFrame without index columnsPython pivot dataframe valuesPivot dataframe in Python
Chilling water in copper vessel
Findminimum of Integral
Mtg creature spells, instants, priority?
Would denouncing cheaters from an exam make me less likely to receive penalties?
Strong Password Detection in Python
Did depressed people far more accurately estimate how many monsters they killed in a video game?
When do flights get cancelled due to fog?
What are the consequences for a developed nation to not accept any refugees?
QR codes, do people use them?
How to use Adostop Eco stop bath?
What was the profession 芸者 (female entertainer) called in Russia?
Passwordless authentication - how and when to invalidate a login code
Four ships at the ocean with the same distance
Is there a method for differentiating informative comments from commented out code?
Gaining Proficiency in Vehicles (water)
Delete elements less than the last largest element
Other Space Shuttle O-ring failures
Is it okay to use open source code to do an interview task?
What term do you use for someone who acts impulsively?
Test Driven Development Roman Numerals php
What is the relationship between external and internal composition in a cartesian closed category?
Can the word "desk" be used as a verb?
What are the effects of abstaining from eating a certain flavor?
Sense of humor in your sci-fi stories
Issue pivoting a DataFrame - python - ValueError: Length of passed values is X index implies Y
Set value for particular cell in pandas DataFrame using indexIndex contains multiples value dataframe pivotsConstructing pandas DataFrame from values in variables gives “ValueError: If using all scalar values, you must pass an index”Stack and Pivot Dataframe in PythonPandas: ValueError when pivoting dataframe with MultiIndexHow to pivot a set of multiple columns into a set of flagged values through DataFrame while not wanting to pivot all columnsreorder multi index dataframe with pivotPython pivot DataFrame without index columnsPython pivot dataframe valuesPivot dataframe in Python
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
I am trying to reshape a pandas data frame that I previously melted. The problem is that in the var_name part are repeating names that I would like to have as columns.
This is how it looks like at the moment as an example:
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
| Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | judgements |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - First Click | 12.085 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - First Click | 10.777 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Last Click | 12.085 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Last Click | 10.777 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Page Submit | 12.899 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Page Submit | 11.906 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Click Count | 1 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Click Count | 1 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 8 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 7 |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
*please note: this a shortened version - as shown in the code below there are more columns.
And this is what I would like to have in the end based an previous example:
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
| Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | Timing - First Click | Timing - Last Click | Timing - Page Submit | Timing - Click Count | judgements |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
| 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 12.085 | 12.085 | 12.899 | 1 | 8 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 10.777 | 10.777 | 11.906 | 1 | 7 |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
*also the number of tweets in the "category" column more than 1000.
I thought I could use pivot to get all tweets first as column, but Timing - First Click, Timing - Last Click, Timing - Page Submit, Timing - Click Count would get in the shape I want and then I just melt them down again while specifying those 4 Timing related columns as id_vars to remain in their shape. But I don't even get that far - pivoting doesn't work:
#first melt
df_clean = pd.melt(df,
id_vars=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
'Q4_level_of_study_other',
'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
'Q11_IELTS_test_result',
'Q12_twitter_usage', 'Valdidation'], var_name='categories', value_name='judgements')
#clear for empty judgements
df_wo_na = df_clean.dropna(subset=['judgements'])
#pivot
df_p = df_wo_na.pivot(index=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
'Q4_level_of_study_other',
'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
'Q11_IELTS_test_result',
'Q12_twitter_usage', 'Valdidation'], columns='categories', values='judgements')
So this is where I fail and it gets me an Error.
ValueError: Length of passed values is 5202, index implies 16
Has anyone has an idea how to solve this?
Thank you in advance
python dataframe stack pivot melt
add a comment |
I am trying to reshape a pandas data frame that I previously melted. The problem is that in the var_name part are repeating names that I would like to have as columns.
This is how it looks like at the moment as an example:
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
| Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | judgements |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - First Click | 12.085 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - First Click | 10.777 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Last Click | 12.085 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Last Click | 10.777 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Page Submit | 12.899 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Page Submit | 11.906 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Click Count | 1 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Click Count | 1 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 8 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 7 |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
*please note: this a shortened version - as shown in the code below there are more columns.
And this is what I would like to have in the end based an previous example:
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
| Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | Timing - First Click | Timing - Last Click | Timing - Page Submit | Timing - Click Count | judgements |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
| 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 12.085 | 12.085 | 12.899 | 1 | 8 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 10.777 | 10.777 | 11.906 | 1 | 7 |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
*also the number of tweets in the "category" column more than 1000.
I thought I could use pivot to get all tweets first as column, but Timing - First Click, Timing - Last Click, Timing - Page Submit, Timing - Click Count would get in the shape I want and then I just melt them down again while specifying those 4 Timing related columns as id_vars to remain in their shape. But I don't even get that far - pivoting doesn't work:
#first melt
df_clean = pd.melt(df,
id_vars=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
'Q4_level_of_study_other',
'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
'Q11_IELTS_test_result',
'Q12_twitter_usage', 'Valdidation'], var_name='categories', value_name='judgements')
#clear for empty judgements
df_wo_na = df_clean.dropna(subset=['judgements'])
#pivot
df_p = df_wo_na.pivot(index=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
'Q4_level_of_study_other',
'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
'Q11_IELTS_test_result',
'Q12_twitter_usage', 'Valdidation'], columns='categories', values='judgements')
So this is where I fail and it gets me an Error.
ValueError: Length of passed values is 5202, index implies 16
Has anyone has an idea how to solve this?
Thank you in advance
python dataframe stack pivot melt
add a comment |
I am trying to reshape a pandas data frame that I previously melted. The problem is that in the var_name part are repeating names that I would like to have as columns.
This is how it looks like at the moment as an example:
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
| Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | judgements |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - First Click | 12.085 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - First Click | 10.777 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Last Click | 12.085 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Last Click | 10.777 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Page Submit | 12.899 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Page Submit | 11.906 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Click Count | 1 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Click Count | 1 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 8 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 7 |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
*please note: this a shortened version - as shown in the code below there are more columns.
And this is what I would like to have in the end based an previous example:
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
| Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | Timing - First Click | Timing - Last Click | Timing - Page Submit | Timing - Click Count | judgements |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
| 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 12.085 | 12.085 | 12.899 | 1 | 8 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 10.777 | 10.777 | 11.906 | 1 | 7 |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
*also the number of tweets in the "category" column more than 1000.
I thought I could use pivot to get all tweets first as column, but Timing - First Click, Timing - Last Click, Timing - Page Submit, Timing - Click Count would get in the shape I want and then I just melt them down again while specifying those 4 Timing related columns as id_vars to remain in their shape. But I don't even get that far - pivoting doesn't work:
#first melt
df_clean = pd.melt(df,
id_vars=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
'Q4_level_of_study_other',
'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
'Q11_IELTS_test_result',
'Q12_twitter_usage', 'Valdidation'], var_name='categories', value_name='judgements')
#clear for empty judgements
df_wo_na = df_clean.dropna(subset=['judgements'])
#pivot
df_p = df_wo_na.pivot(index=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
'Q4_level_of_study_other',
'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
'Q11_IELTS_test_result',
'Q12_twitter_usage', 'Valdidation'], columns='categories', values='judgements')
So this is where I fail and it gets me an Error.
ValueError: Length of passed values is 5202, index implies 16
Has anyone has an idea how to solve this?
Thank you in advance
python dataframe stack pivot melt
I am trying to reshape a pandas data frame that I previously melted. The problem is that in the var_name part are repeating names that I would like to have as columns.
This is how it looks like at the moment as an example:
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
| Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | judgements |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - First Click | 12.085 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - First Click | 10.777 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Last Click | 12.085 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Last Click | 10.777 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Page Submit | 12.899 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Page Submit | 11.906 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Timing - Click Count | 1 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Timing - Click Count | 1 |
| 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 8 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 7 |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
*please note: this a shortened version - as shown in the code below there are more columns.
And this is what I would like to have in the end based an previous example:
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
| Duration_survey | Q1_gender | Q2_age | ….. | Valdidation | categories | Timing - First Click | Timing - Last Click | Timing - Page Submit | Timing - Click Count | judgements |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
| 657 | Male | Older than 40 | | En la variedad hay placer. | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 12.085 | 12.085 | 12.899 | 1 | 8 |
| 480 | Male | 31-40 | | en la variedad esta el placer | Anyways, despite the urgency it’s fraught. Just check out media #twitter’s reaction to the ambiguity around who gets to spend this money. #cdnmedia #journalism | 10.777 | 10.777 | 11.906 | 1 | 7 |
+-----------------+-----------+---------------+-----+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------+---------------------+----------------------+----------------------+------------+
*also the number of tweets in the "category" column more than 1000.
I thought I could use pivot to get all tweets first as column, but Timing - First Click, Timing - Last Click, Timing - Page Submit, Timing - Click Count would get in the shape I want and then I just melt them down again while specifying those 4 Timing related columns as id_vars to remain in their shape. But I don't even get that far - pivoting doesn't work:
#first melt
df_clean = pd.melt(df,
id_vars=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
'Q4_level_of_study_other',
'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
'Q11_IELTS_test_result',
'Q12_twitter_usage', 'Valdidation'], var_name='categories', value_name='judgements')
#clear for empty judgements
df_wo_na = df_clean.dropna(subset=['judgements'])
#pivot
df_p = df_wo_na.pivot(index=['Duration_survey', 'Q1_gender', 'Q2_age', 'Q3_country', 'Q4_level_of_study',
'Q4_level_of_study_other',
'Q5_native_lang', 'Q6_second_lang', 'Q7_english_test', 'Q8_english_test_name',
'Q8_english_test_name_other', 'Q9_english_test_time', 'Q10_english_test_result',
'Q11_IELTS_test_result',
'Q12_twitter_usage', 'Valdidation'], columns='categories', values='judgements')
So this is where I fail and it gets me an Error.
ValueError: Length of passed values is 5202, index implies 16
Has anyone has an idea how to solve this?
Thank you in advance
python dataframe stack pivot melt
python dataframe stack pivot melt
asked Mar 25 at 22:35
Patrick JacobPatrick Jacob
33 bronze badges
33 bronze badges
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55347369%2fissue-pivoting-a-dataframe-python-valueerror-length-of-passed-values-is-x-i%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Is this question similar to what you get asked at work? Learn more about asking and sharing private information with your coworkers using Stack Overflow for Teams.
Is this question similar to what you get asked at work? Learn more about asking and sharing private information with your coworkers using Stack Overflow for Teams.
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55347369%2fissue-pivoting-a-dataframe-python-valueerror-length-of-passed-values-is-x-i%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown