Pandas filter dataframe based on condition for the first n rowsAdd one row to pandas DataFrameSelecting multiple columns in a pandas dataframeAdding new column to existing DataFrame in Python pandasDelete column from pandas DataFrameDelete rows from a pandas DataFrame based on a conditional expression involving len(string) giving KeyErrorHow do I get the row count of a pandas DataFrame?How to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandasDeleting DataFrame row in Pandas based on column valueGet list from pandas DataFrame column headers

Has the US government provided details on plans to deal with AIDS and childhood cancer?

Went to a big 4 but got fired for underperformance in a year recently - Now every one thinks I'm pro - How to balance expectations?

Basic transistor circuit

Could flaps be raised upward to serve as spoilers / lift dumpers?

Conflict between senior and junior members

How can flights operated by the same company have such different prices when marketed by another?

Why are sugars in whole fruits not digested the same way sugars in juice are?

Security measures that could plausibly last 150+ years?

Word for giving preference to the oldest child

Skipping same old introductions

Should I put my name first or last in the team members list?

Gold Battle KoTH

How to escape forward slashes?

PI 4 screen rotation from the terminal

Why have both: BJT and FET transistors on IC output?

UX writing: When to use "we"?

Accurately recalling the key - can everyone do it?

Cross out words with TikZ: line opacity

Is the EU really banning "toxic propellants" in 2020? How is that going to work?

Return last number in sub-sequences in a list of integers

The grades of the students in a class

How do I respond appropriately to an overseas company that obtained a visa for me without hiring me?

Adding a (stair/baby) gate without facing walls

Backpacking with incontinence



Pandas filter dataframe based on condition for the first n rows


Add one row to pandas DataFrameSelecting multiple columns in a pandas dataframeAdding new column to existing DataFrame in Python pandasDelete column from pandas DataFrameDelete rows from a pandas DataFrame based on a conditional expression involving len(string) giving KeyErrorHow do I get the row count of a pandas DataFrame?How to iterate over rows in a DataFrame in Pandas?Select rows from a DataFrame based on values in a column in pandasDeleting DataFrame row in Pandas based on column valueGet list from pandas DataFrame column headers






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








4















I have a dataframe of shape [600 000, 19]. I want to filter the first 100 000 rows based on one condition, the next 300 000 based on another condition, and a 3rd condition for the last rows. I was wondering how this can be done.



Currently, I split the data frame into 3 segments and apply their respective conditions. Then, I re-concatenate the data frame. Is there a better way?



Example: Filter first 100 000 rows based on any value less than 5. For second 300 000 rows, I dont want any values greater than 40, etc.










share|improve this question
























  • reset index into a column then you can incorporate the row sequence number into your condition

    – adrtam
    Mar 26 at 23:51











  • Try creating three masks using .iloc and then appply the three masks at once using 'or' ( | ) to the dataframe.

    – run-out
    Mar 27 at 0:23

















4















I have a dataframe of shape [600 000, 19]. I want to filter the first 100 000 rows based on one condition, the next 300 000 based on another condition, and a 3rd condition for the last rows. I was wondering how this can be done.



Currently, I split the data frame into 3 segments and apply their respective conditions. Then, I re-concatenate the data frame. Is there a better way?



Example: Filter first 100 000 rows based on any value less than 5. For second 300 000 rows, I dont want any values greater than 40, etc.










share|improve this question
























  • reset index into a column then you can incorporate the row sequence number into your condition

    – adrtam
    Mar 26 at 23:51











  • Try creating three masks using .iloc and then appply the three masks at once using 'or' ( | ) to the dataframe.

    – run-out
    Mar 27 at 0:23













4












4








4


1






I have a dataframe of shape [600 000, 19]. I want to filter the first 100 000 rows based on one condition, the next 300 000 based on another condition, and a 3rd condition for the last rows. I was wondering how this can be done.



Currently, I split the data frame into 3 segments and apply their respective conditions. Then, I re-concatenate the data frame. Is there a better way?



Example: Filter first 100 000 rows based on any value less than 5. For second 300 000 rows, I dont want any values greater than 40, etc.










share|improve this question














I have a dataframe of shape [600 000, 19]. I want to filter the first 100 000 rows based on one condition, the next 300 000 based on another condition, and a 3rd condition for the last rows. I was wondering how this can be done.



Currently, I split the data frame into 3 segments and apply their respective conditions. Then, I re-concatenate the data frame. Is there a better way?



Example: Filter first 100 000 rows based on any value less than 5. For second 300 000 rows, I dont want any values greater than 40, etc.







python pandas filtering conditional-statements






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Mar 26 at 23:40









Rui NianRui Nian

6694 silver badges13 bronze badges




6694 silver badges13 bronze badges















  • reset index into a column then you can incorporate the row sequence number into your condition

    – adrtam
    Mar 26 at 23:51











  • Try creating three masks using .iloc and then appply the three masks at once using 'or' ( | ) to the dataframe.

    – run-out
    Mar 27 at 0:23

















  • reset index into a column then you can incorporate the row sequence number into your condition

    – adrtam
    Mar 26 at 23:51











  • Try creating three masks using .iloc and then appply the three masks at once using 'or' ( | ) to the dataframe.

    – run-out
    Mar 27 at 0:23
















reset index into a column then you can incorporate the row sequence number into your condition

– adrtam
Mar 26 at 23:51





reset index into a column then you can incorporate the row sequence number into your condition

– adrtam
Mar 26 at 23:51













Try creating three masks using .iloc and then appply the three masks at once using 'or' ( | ) to the dataframe.

– run-out
Mar 27 at 0:23





Try creating three masks using .iloc and then appply the three masks at once using 'or' ( | ) to the dataframe.

– run-out
Mar 27 at 0:23












2 Answers
2






active

oldest

votes


















2














You can try the following approach:



import pandas as pd

sample = pd.DataFrame('x' : pd.np.arange(100),
'colname': pd.np.arange(100))
conditions = [('index < 5', 'colname < 3'),
('index > 50', 'index < 100', 'colname < 55')]
sample.query('|'.join(map(lambda x: '&'.join(x), conditions)))





share|improve this answer



























  • Thanks! This definitely was able to accomplish the task without splitting and reconcat'ing. I also learned a few other things about Pandas.

    – Rui Nian
    Mar 27 at 16:40


















1














On approach would be to use dataframe index slicing with pd.concat to build complete boolean series:



import numpy as np
import pandas as pd
np.random.seed(0)
df=pd.DataFrame(np.random.randint(0,50,60))

df[pd.concat([df.iloc[:10] > 10, df[11:40] < 30, df[41:] % 2 == 0])]


Where first 10 records filters less than 10, next 30 values filters greater than 30, and last values check for even numbers.



Then you can use dropna to remove all the NaN values



Output:



 0
0 44.0
1 47.0
2 NaN
3 NaN
4 NaN
5 39.0
6 NaN
7 19.0
8 21.0
9 36.0
10 NaN
11 6.0
12 24.0
13 24.0
14 12.0
15 1.0
16 NaN
17 NaN
18 23.0
19 NaN
20 24.0
21 17.0
22 NaN
23 25.0
24 13.0
25 8.0
26 9.0
27 20.0
28 16.0
29 5.0
30 15.0
31 NaN
32 0.0
33 18.0
34 NaN
35 24.0
36 NaN
37 29.0
38 19.0
39 19.0
40 NaN
41 NaN
42 32.0
43 NaN
44 NaN
45 32.0
46 NaN
47 10.0
48 NaN
49 NaN
50 NaN
51 28.0
52 34.0
53 0.0
54 0.0
55 36.0
56 NaN
57 38.0
58 40.0
59 NaN





share|improve this answer

























  • Thanks! This is definitely a cleaner version of what I had originally, I then dropped the na's and reset the index and it works great.

    – Rui Nian
    Mar 27 at 16:39













Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55367725%2fpandas-filter-dataframe-based-on-condition-for-the-first-n-rows%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2














You can try the following approach:



import pandas as pd

sample = pd.DataFrame('x' : pd.np.arange(100),
'colname': pd.np.arange(100))
conditions = [('index < 5', 'colname < 3'),
('index > 50', 'index < 100', 'colname < 55')]
sample.query('|'.join(map(lambda x: '&'.join(x), conditions)))





share|improve this answer



























  • Thanks! This definitely was able to accomplish the task without splitting and reconcat'ing. I also learned a few other things about Pandas.

    – Rui Nian
    Mar 27 at 16:40















2














You can try the following approach:



import pandas as pd

sample = pd.DataFrame('x' : pd.np.arange(100),
'colname': pd.np.arange(100))
conditions = [('index < 5', 'colname < 3'),
('index > 50', 'index < 100', 'colname < 55')]
sample.query('|'.join(map(lambda x: '&'.join(x), conditions)))





share|improve this answer



























  • Thanks! This definitely was able to accomplish the task without splitting and reconcat'ing. I also learned a few other things about Pandas.

    – Rui Nian
    Mar 27 at 16:40













2












2








2







You can try the following approach:



import pandas as pd

sample = pd.DataFrame('x' : pd.np.arange(100),
'colname': pd.np.arange(100))
conditions = [('index < 5', 'colname < 3'),
('index > 50', 'index < 100', 'colname < 55')]
sample.query('|'.join(map(lambda x: '&'.join(x), conditions)))





share|improve this answer















You can try the following approach:



import pandas as pd

sample = pd.DataFrame('x' : pd.np.arange(100),
'colname': pd.np.arange(100))
conditions = [('index < 5', 'colname < 3'),
('index > 50', 'index < 100', 'colname < 55')]
sample.query('|'.join(map(lambda x: '&'.join(x), conditions)))






share|improve this answer














share|improve this answer



share|improve this answer








edited Mar 27 at 0:34

























answered Mar 27 at 0:25









bubblebubble

1,1808 silver badges13 bronze badges




1,1808 silver badges13 bronze badges















  • Thanks! This definitely was able to accomplish the task without splitting and reconcat'ing. I also learned a few other things about Pandas.

    – Rui Nian
    Mar 27 at 16:40

















  • Thanks! This definitely was able to accomplish the task without splitting and reconcat'ing. I also learned a few other things about Pandas.

    – Rui Nian
    Mar 27 at 16:40
















Thanks! This definitely was able to accomplish the task without splitting and reconcat'ing. I also learned a few other things about Pandas.

– Rui Nian
Mar 27 at 16:40





Thanks! This definitely was able to accomplish the task without splitting and reconcat'ing. I also learned a few other things about Pandas.

– Rui Nian
Mar 27 at 16:40













1














On approach would be to use dataframe index slicing with pd.concat to build complete boolean series:



import numpy as np
import pandas as pd
np.random.seed(0)
df=pd.DataFrame(np.random.randint(0,50,60))

df[pd.concat([df.iloc[:10] > 10, df[11:40] < 30, df[41:] % 2 == 0])]


Where first 10 records filters less than 10, next 30 values filters greater than 30, and last values check for even numbers.



Then you can use dropna to remove all the NaN values



Output:



 0
0 44.0
1 47.0
2 NaN
3 NaN
4 NaN
5 39.0
6 NaN
7 19.0
8 21.0
9 36.0
10 NaN
11 6.0
12 24.0
13 24.0
14 12.0
15 1.0
16 NaN
17 NaN
18 23.0
19 NaN
20 24.0
21 17.0
22 NaN
23 25.0
24 13.0
25 8.0
26 9.0
27 20.0
28 16.0
29 5.0
30 15.0
31 NaN
32 0.0
33 18.0
34 NaN
35 24.0
36 NaN
37 29.0
38 19.0
39 19.0
40 NaN
41 NaN
42 32.0
43 NaN
44 NaN
45 32.0
46 NaN
47 10.0
48 NaN
49 NaN
50 NaN
51 28.0
52 34.0
53 0.0
54 0.0
55 36.0
56 NaN
57 38.0
58 40.0
59 NaN





share|improve this answer

























  • Thanks! This is definitely a cleaner version of what I had originally, I then dropped the na's and reset the index and it works great.

    – Rui Nian
    Mar 27 at 16:39















1














On approach would be to use dataframe index slicing with pd.concat to build complete boolean series:



import numpy as np
import pandas as pd
np.random.seed(0)
df=pd.DataFrame(np.random.randint(0,50,60))

df[pd.concat([df.iloc[:10] > 10, df[11:40] < 30, df[41:] % 2 == 0])]


Where first 10 records filters less than 10, next 30 values filters greater than 30, and last values check for even numbers.



Then you can use dropna to remove all the NaN values



Output:



 0
0 44.0
1 47.0
2 NaN
3 NaN
4 NaN
5 39.0
6 NaN
7 19.0
8 21.0
9 36.0
10 NaN
11 6.0
12 24.0
13 24.0
14 12.0
15 1.0
16 NaN
17 NaN
18 23.0
19 NaN
20 24.0
21 17.0
22 NaN
23 25.0
24 13.0
25 8.0
26 9.0
27 20.0
28 16.0
29 5.0
30 15.0
31 NaN
32 0.0
33 18.0
34 NaN
35 24.0
36 NaN
37 29.0
38 19.0
39 19.0
40 NaN
41 NaN
42 32.0
43 NaN
44 NaN
45 32.0
46 NaN
47 10.0
48 NaN
49 NaN
50 NaN
51 28.0
52 34.0
53 0.0
54 0.0
55 36.0
56 NaN
57 38.0
58 40.0
59 NaN





share|improve this answer

























  • Thanks! This is definitely a cleaner version of what I had originally, I then dropped the na's and reset the index and it works great.

    – Rui Nian
    Mar 27 at 16:39













1












1








1







On approach would be to use dataframe index slicing with pd.concat to build complete boolean series:



import numpy as np
import pandas as pd
np.random.seed(0)
df=pd.DataFrame(np.random.randint(0,50,60))

df[pd.concat([df.iloc[:10] > 10, df[11:40] < 30, df[41:] % 2 == 0])]


Where first 10 records filters less than 10, next 30 values filters greater than 30, and last values check for even numbers.



Then you can use dropna to remove all the NaN values



Output:



 0
0 44.0
1 47.0
2 NaN
3 NaN
4 NaN
5 39.0
6 NaN
7 19.0
8 21.0
9 36.0
10 NaN
11 6.0
12 24.0
13 24.0
14 12.0
15 1.0
16 NaN
17 NaN
18 23.0
19 NaN
20 24.0
21 17.0
22 NaN
23 25.0
24 13.0
25 8.0
26 9.0
27 20.0
28 16.0
29 5.0
30 15.0
31 NaN
32 0.0
33 18.0
34 NaN
35 24.0
36 NaN
37 29.0
38 19.0
39 19.0
40 NaN
41 NaN
42 32.0
43 NaN
44 NaN
45 32.0
46 NaN
47 10.0
48 NaN
49 NaN
50 NaN
51 28.0
52 34.0
53 0.0
54 0.0
55 36.0
56 NaN
57 38.0
58 40.0
59 NaN





share|improve this answer













On approach would be to use dataframe index slicing with pd.concat to build complete boolean series:



import numpy as np
import pandas as pd
np.random.seed(0)
df=pd.DataFrame(np.random.randint(0,50,60))

df[pd.concat([df.iloc[:10] > 10, df[11:40] < 30, df[41:] % 2 == 0])]


Where first 10 records filters less than 10, next 30 values filters greater than 30, and last values check for even numbers.



Then you can use dropna to remove all the NaN values



Output:



 0
0 44.0
1 47.0
2 NaN
3 NaN
4 NaN
5 39.0
6 NaN
7 19.0
8 21.0
9 36.0
10 NaN
11 6.0
12 24.0
13 24.0
14 12.0
15 1.0
16 NaN
17 NaN
18 23.0
19 NaN
20 24.0
21 17.0
22 NaN
23 25.0
24 13.0
25 8.0
26 9.0
27 20.0
28 16.0
29 5.0
30 15.0
31 NaN
32 0.0
33 18.0
34 NaN
35 24.0
36 NaN
37 29.0
38 19.0
39 19.0
40 NaN
41 NaN
42 32.0
43 NaN
44 NaN
45 32.0
46 NaN
47 10.0
48 NaN
49 NaN
50 NaN
51 28.0
52 34.0
53 0.0
54 0.0
55 36.0
56 NaN
57 38.0
58 40.0
59 NaN






share|improve this answer












share|improve this answer



share|improve this answer










answered Mar 27 at 0:50









Scott BostonScott Boston

65.4k7 gold badges39 silver badges63 bronze badges




65.4k7 gold badges39 silver badges63 bronze badges















  • Thanks! This is definitely a cleaner version of what I had originally, I then dropped the na's and reset the index and it works great.

    – Rui Nian
    Mar 27 at 16:39

















  • Thanks! This is definitely a cleaner version of what I had originally, I then dropped the na's and reset the index and it works great.

    – Rui Nian
    Mar 27 at 16:39
















Thanks! This is definitely a cleaner version of what I had originally, I then dropped the na's and reset the index and it works great.

– Rui Nian
Mar 27 at 16:39





Thanks! This is definitely a cleaner version of what I had originally, I then dropped the na's and reset the index and it works great.

– Rui Nian
Mar 27 at 16:39

















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55367725%2fpandas-filter-dataframe-based-on-condition-for-the-first-n-rows%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현