Run inference with an openCV imageconvert Mat to Bitmap Opencv for AndroidIs there a way to run Python on Android?Strange out of memory issue while loading an image to a Bitmap objectLazy load of images in ListViewHow to check if a service is running on Android?Correct way to convert between Bitmap and Mat in OpenCV on Android?Image Processing: Algorithm Improvement for 'Coca-Cola Can' RecognitionAndroid custom image view shapeImage classification through Tensorflow gives the exact same predictionUnable to test and deploy a deeplabv3-mobilenetv2 tensorflow-lite segmentation model for inferenceAndroid / TFlite call results in a NPE
Can I say "Gesundheit" if someone is coughing?
Does the problem of P vs NP come under the category of Operational Research?
How to derive trigonometric Cartesian equation from parametric
Security measures that could plausibly last 150+ years?
When did J.K. Rowling decide to make Ron and Hermione a couple?
"Fewer errors means better products" or "Fewer errors mean better products"?
Why is “deal 6 damage” a legit phrase?
Normally Closed Optoisolators
Is it really a problem to declare that a visitor to the UK is my "girlfriend", in terms of her successfully getting a Standard Visitor visa?
Derivative is just speed of change?
How do Canadians get a visa to go to Saudi Arabia?
The grades of the students in a class
Is this popular optical illusion made of a grey-scale image with coloured lines?
Password management for kids - what's a good way to start?
Should 2FA be enabled on service accounts?
Oath of redemption: Does Emmissary of Peace reflect damage taken from Aura of the Guardian?
Are some indefinite integrals impossible to compute or just don't exist?
How to trick a fairly simplistic kill-counter?
How is Sword Coast North governed?
What is the most 'environmentally friendly' way to learn to fly?
Python π = 1 + (1/2) + (1/3) + (1/4) - (1/5) + (1/6) + (1/7) + (1/8) + (1/9) - (1/10) ...1748 Euler
Why don't short runways use ramps for takeoff?
Being told my "network" isn't PCI Complaint. I don't even have a server! Do I have to comply?
When did J.K. Rowling decide to make Harry and Ginny a couple?
Run inference with an openCV image
convert Mat to Bitmap Opencv for AndroidIs there a way to run Python on Android?Strange out of memory issue while loading an image to a Bitmap objectLazy load of images in ListViewHow to check if a service is running on Android?Correct way to convert between Bitmap and Mat in OpenCV on Android?Image Processing: Algorithm Improvement for 'Coca-Cola Can' RecognitionAndroid custom image view shapeImage classification through Tensorflow gives the exact same predictionUnable to test and deploy a deeplabv3-mobilenetv2 tensorflow-lite segmentation model for inferenceAndroid / TFlite call results in a NPE
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
I have an Android Project with OpenCV4.0.1 and TFLite installed.
And I want to make an inference with a pretrained MobileNetV2 of an cv::Mat which I extracted and cropped from a CameraBridgeViewBase (Android style).
But it's kinda difficult.
I followed this example.
That does the inference about a ByteBuffer variable called "imgData" (line 71, class: org.tensorflow.lite.examples.classification.tflite.Classifier)
That imgData looks been filled on the method called "convertBitmapToByteBuffer" from the same class (line 185), adding pixel by pixel form a bitmap that looks to be cropped little before.
private int[] intValues = new int[224 * 224];
Mat _croppedFace = new Mat() // Cropped image from CvCameraViewFrame.rgba() method.
float[][] outputVal = new float[1][1]; // Output value from my MobileNetV2 // trained model (i've changed the output on training, tested on python)
// Following: https://stackoverflow.com/questions/13134682/convert-mat-to-bitmap-opencv-for-android
Bitmap bitmap = Bitmap.createBitmap(_croppedFace.cols(), _croppedFace.rows(), Bitmap.Config.ARGB_8888);
Utils.matToBitmap(_croppedFace, bitmap);
convertBitmapToByteBuffer(bitmap); // This call should be used as the example one.
// runInference();
_tflite.run(imgData, outputVal);
But, it looks that the input_shape of my NN is not correct, but I'm following the MobileNet example because my NN it's a MobileNetV2.
android opencv tensorflow tensorflow-lite
add a comment |
I have an Android Project with OpenCV4.0.1 and TFLite installed.
And I want to make an inference with a pretrained MobileNetV2 of an cv::Mat which I extracted and cropped from a CameraBridgeViewBase (Android style).
But it's kinda difficult.
I followed this example.
That does the inference about a ByteBuffer variable called "imgData" (line 71, class: org.tensorflow.lite.examples.classification.tflite.Classifier)
That imgData looks been filled on the method called "convertBitmapToByteBuffer" from the same class (line 185), adding pixel by pixel form a bitmap that looks to be cropped little before.
private int[] intValues = new int[224 * 224];
Mat _croppedFace = new Mat() // Cropped image from CvCameraViewFrame.rgba() method.
float[][] outputVal = new float[1][1]; // Output value from my MobileNetV2 // trained model (i've changed the output on training, tested on python)
// Following: https://stackoverflow.com/questions/13134682/convert-mat-to-bitmap-opencv-for-android
Bitmap bitmap = Bitmap.createBitmap(_croppedFace.cols(), _croppedFace.rows(), Bitmap.Config.ARGB_8888);
Utils.matToBitmap(_croppedFace, bitmap);
convertBitmapToByteBuffer(bitmap); // This call should be used as the example one.
// runInference();
_tflite.run(imgData, outputVal);
But, it looks that the input_shape of my NN is not correct, but I'm following the MobileNet example because my NN it's a MobileNetV2.
android opencv tensorflow tensorflow-lite
add a comment |
I have an Android Project with OpenCV4.0.1 and TFLite installed.
And I want to make an inference with a pretrained MobileNetV2 of an cv::Mat which I extracted and cropped from a CameraBridgeViewBase (Android style).
But it's kinda difficult.
I followed this example.
That does the inference about a ByteBuffer variable called "imgData" (line 71, class: org.tensorflow.lite.examples.classification.tflite.Classifier)
That imgData looks been filled on the method called "convertBitmapToByteBuffer" from the same class (line 185), adding pixel by pixel form a bitmap that looks to be cropped little before.
private int[] intValues = new int[224 * 224];
Mat _croppedFace = new Mat() // Cropped image from CvCameraViewFrame.rgba() method.
float[][] outputVal = new float[1][1]; // Output value from my MobileNetV2 // trained model (i've changed the output on training, tested on python)
// Following: https://stackoverflow.com/questions/13134682/convert-mat-to-bitmap-opencv-for-android
Bitmap bitmap = Bitmap.createBitmap(_croppedFace.cols(), _croppedFace.rows(), Bitmap.Config.ARGB_8888);
Utils.matToBitmap(_croppedFace, bitmap);
convertBitmapToByteBuffer(bitmap); // This call should be used as the example one.
// runInference();
_tflite.run(imgData, outputVal);
But, it looks that the input_shape of my NN is not correct, but I'm following the MobileNet example because my NN it's a MobileNetV2.
android opencv tensorflow tensorflow-lite
I have an Android Project with OpenCV4.0.1 and TFLite installed.
And I want to make an inference with a pretrained MobileNetV2 of an cv::Mat which I extracted and cropped from a CameraBridgeViewBase (Android style).
But it's kinda difficult.
I followed this example.
That does the inference about a ByteBuffer variable called "imgData" (line 71, class: org.tensorflow.lite.examples.classification.tflite.Classifier)
That imgData looks been filled on the method called "convertBitmapToByteBuffer" from the same class (line 185), adding pixel by pixel form a bitmap that looks to be cropped little before.
private int[] intValues = new int[224 * 224];
Mat _croppedFace = new Mat() // Cropped image from CvCameraViewFrame.rgba() method.
float[][] outputVal = new float[1][1]; // Output value from my MobileNetV2 // trained model (i've changed the output on training, tested on python)
// Following: https://stackoverflow.com/questions/13134682/convert-mat-to-bitmap-opencv-for-android
Bitmap bitmap = Bitmap.createBitmap(_croppedFace.cols(), _croppedFace.rows(), Bitmap.Config.ARGB_8888);
Utils.matToBitmap(_croppedFace, bitmap);
convertBitmapToByteBuffer(bitmap); // This call should be used as the example one.
// runInference();
_tflite.run(imgData, outputVal);
But, it looks that the input_shape of my NN is not correct, but I'm following the MobileNet example because my NN it's a MobileNetV2.
android opencv tensorflow tensorflow-lite
android opencv tensorflow tensorflow-lite
edited Mar 26 at 23:42
TheRealBilaal
5432 gold badges5 silver badges17 bronze badges
5432 gold badges5 silver badges17 bronze badges
asked Mar 26 at 16:49
PabloPablo
93 bronze badges
93 bronze badges
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
I've solved the error, but I'm sure that it isn't the best way to do it.
Keras MobilenetV2 input_shape is: (nBatches, 224, 224, nChannels).
I just want to predict a single image, so, nBaches == 1, and I'm working on RGB mode, so nChannels == 3
// Nasty nasty, but works. nBatches == 2? -- _cropped.shape() == (244, 244), 3 channels.
float [][][][] _inputValue = new float[2][_cropped.cols()][_cropped.rows()][3];
// Fill the _inputValue
for(int i = 0; i < _croppedFace.cols(); ++i)
for (int j = 0; j < _croppedFace.rows(); ++j)
for(int z = 0; z < 3; ++z)
_inputValue [0][i][j][z] = (float) _croppedFace.get(i, j)[z] / 255; // DL works better with 0:1 values.
/*
Output val, has this shape, but I don't really know why.
I'm sure that one's of that 2's is for nClasses (I'm working with 2 classes)
But I don't really know why it's using the other one.
*/
float[][] outputVal = new float[2][2];
// Tensorflow lite interpreter
_tflite.run(_inputValue , outputVal);
On python has the same shape:
Python prediction:
[[XXXXXX, YYYYY]] <- Sure for the last layer that I made, this is just a prototype NN.
Hope some one got help, and also that someone can improve the answer because this is not very optimized.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55362339%2frun-inference-with-an-opencv-image%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I've solved the error, but I'm sure that it isn't the best way to do it.
Keras MobilenetV2 input_shape is: (nBatches, 224, 224, nChannels).
I just want to predict a single image, so, nBaches == 1, and I'm working on RGB mode, so nChannels == 3
// Nasty nasty, but works. nBatches == 2? -- _cropped.shape() == (244, 244), 3 channels.
float [][][][] _inputValue = new float[2][_cropped.cols()][_cropped.rows()][3];
// Fill the _inputValue
for(int i = 0; i < _croppedFace.cols(); ++i)
for (int j = 0; j < _croppedFace.rows(); ++j)
for(int z = 0; z < 3; ++z)
_inputValue [0][i][j][z] = (float) _croppedFace.get(i, j)[z] / 255; // DL works better with 0:1 values.
/*
Output val, has this shape, but I don't really know why.
I'm sure that one's of that 2's is for nClasses (I'm working with 2 classes)
But I don't really know why it's using the other one.
*/
float[][] outputVal = new float[2][2];
// Tensorflow lite interpreter
_tflite.run(_inputValue , outputVal);
On python has the same shape:
Python prediction:
[[XXXXXX, YYYYY]] <- Sure for the last layer that I made, this is just a prototype NN.
Hope some one got help, and also that someone can improve the answer because this is not very optimized.
add a comment |
I've solved the error, but I'm sure that it isn't the best way to do it.
Keras MobilenetV2 input_shape is: (nBatches, 224, 224, nChannels).
I just want to predict a single image, so, nBaches == 1, and I'm working on RGB mode, so nChannels == 3
// Nasty nasty, but works. nBatches == 2? -- _cropped.shape() == (244, 244), 3 channels.
float [][][][] _inputValue = new float[2][_cropped.cols()][_cropped.rows()][3];
// Fill the _inputValue
for(int i = 0; i < _croppedFace.cols(); ++i)
for (int j = 0; j < _croppedFace.rows(); ++j)
for(int z = 0; z < 3; ++z)
_inputValue [0][i][j][z] = (float) _croppedFace.get(i, j)[z] / 255; // DL works better with 0:1 values.
/*
Output val, has this shape, but I don't really know why.
I'm sure that one's of that 2's is for nClasses (I'm working with 2 classes)
But I don't really know why it's using the other one.
*/
float[][] outputVal = new float[2][2];
// Tensorflow lite interpreter
_tflite.run(_inputValue , outputVal);
On python has the same shape:
Python prediction:
[[XXXXXX, YYYYY]] <- Sure for the last layer that I made, this is just a prototype NN.
Hope some one got help, and also that someone can improve the answer because this is not very optimized.
add a comment |
I've solved the error, but I'm sure that it isn't the best way to do it.
Keras MobilenetV2 input_shape is: (nBatches, 224, 224, nChannels).
I just want to predict a single image, so, nBaches == 1, and I'm working on RGB mode, so nChannels == 3
// Nasty nasty, but works. nBatches == 2? -- _cropped.shape() == (244, 244), 3 channels.
float [][][][] _inputValue = new float[2][_cropped.cols()][_cropped.rows()][3];
// Fill the _inputValue
for(int i = 0; i < _croppedFace.cols(); ++i)
for (int j = 0; j < _croppedFace.rows(); ++j)
for(int z = 0; z < 3; ++z)
_inputValue [0][i][j][z] = (float) _croppedFace.get(i, j)[z] / 255; // DL works better with 0:1 values.
/*
Output val, has this shape, but I don't really know why.
I'm sure that one's of that 2's is for nClasses (I'm working with 2 classes)
But I don't really know why it's using the other one.
*/
float[][] outputVal = new float[2][2];
// Tensorflow lite interpreter
_tflite.run(_inputValue , outputVal);
On python has the same shape:
Python prediction:
[[XXXXXX, YYYYY]] <- Sure for the last layer that I made, this is just a prototype NN.
Hope some one got help, and also that someone can improve the answer because this is not very optimized.
I've solved the error, but I'm sure that it isn't the best way to do it.
Keras MobilenetV2 input_shape is: (nBatches, 224, 224, nChannels).
I just want to predict a single image, so, nBaches == 1, and I'm working on RGB mode, so nChannels == 3
// Nasty nasty, but works. nBatches == 2? -- _cropped.shape() == (244, 244), 3 channels.
float [][][][] _inputValue = new float[2][_cropped.cols()][_cropped.rows()][3];
// Fill the _inputValue
for(int i = 0; i < _croppedFace.cols(); ++i)
for (int j = 0; j < _croppedFace.rows(); ++j)
for(int z = 0; z < 3; ++z)
_inputValue [0][i][j][z] = (float) _croppedFace.get(i, j)[z] / 255; // DL works better with 0:1 values.
/*
Output val, has this shape, but I don't really know why.
I'm sure that one's of that 2's is for nClasses (I'm working with 2 classes)
But I don't really know why it's using the other one.
*/
float[][] outputVal = new float[2][2];
// Tensorflow lite interpreter
_tflite.run(_inputValue , outputVal);
On python has the same shape:
Python prediction:
[[XXXXXX, YYYYY]] <- Sure for the last layer that I made, this is just a prototype NN.
Hope some one got help, and also that someone can improve the answer because this is not very optimized.
edited Mar 29 at 8:58
answered Mar 29 at 8:49
PabloPablo
93 bronze badges
93 bronze badges
add a comment |
add a comment |
Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.
Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55362339%2frun-inference-with-an-opencv-image%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown