How to make Keras-GAN work with non-standard input shape?Why do Keras Conv1D layers' output tensors not have the input dimension?Maxpooling Layer causes error in KerasKeras layer shape in plot_model()Output of conv2d in kerasFine-tuning VGG, got:Negative dimension size caused by subtracting 2 from 1Why keras embeding layer has no keysThe output NN is image an image with values 0 or 1, but the expected are a range of integers between 0 and 255understanding output shape of keras Conv2DTransposepadding based on shape of largest layer of Concatenate inputs?How can I freeze last layer of my own model?
How to ensure color fidelity of the same file on two computers?
How to decline a wedding invitation from a friend I haven't seen in years?
Who enforces MPAA rating adherence?
How is the excise border managed in Ireland?
Let M and N be single-digit integers. If the product 2M5 x 13N is divisible by 36, how many ordered pairs (M,N) are possible?
Has there been a multiethnic Star Trek character?
Is using 'echo' to display attacker-controlled data on the terminal dangerous?
貧しい【まずしい】 poor 貧乏【びんぼう】な poor What's the difference?
Is it legal for a bar bouncer to confiscate a fake ID
GroupBy operation using an entire dataframe to group values
How can I get an unreasonable manager to approve time off?
What to do when surprise and a high initiative roll conflict with the narrative?
How to hide rifle during medieval town entrance inspection?
Traversing Oceania: A Cryptic Journey
Determining fair price for profitable mobile app business
Is White controlling this game?
Is it possible for a vehicle to be manufactured without a catalytic converter?
Are there any important biographies of nobodies?
How did old MS-DOS games utilize various graphic cards?
What ways have you found to get edits from non-LaTeX users?
Heap allocation on microcontroller
Why can I traceroute to this IP address, but not ping?
What is the color of artificial intelligence?
Should I ask for an extra raise?
How to make Keras-GAN work with non-standard input shape?
Why do Keras Conv1D layers' output tensors not have the input dimension?Maxpooling Layer causes error in KerasKeras layer shape in plot_model()Output of conv2d in kerasFine-tuning VGG, got:Negative dimension size caused by subtracting 2 from 1Why keras embeding layer has no keysThe output NN is image an image with values 0 or 1, but the expected are a range of integers between 0 and 255understanding output shape of keras Conv2DTransposepadding based on shape of largest layer of Concatenate inputs?How can I freeze last layer of my own model?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;
I have been using this Keras-GAN repository, specifically its pix2pix package for image-to-image translation. It works great when the input shape is a standard (256,256), and also works with the (28,28) MNIST data. However, when I try with inputs of shape (196,208), I get the following ValueError:
A 'Concatenate' layer requires inputs with matching shapes except for the concat axis. Got inputs shapes: [(None, 8, 8, 512), (None, 7, 7, 512)]
For some context, the Concatenate function is being called in the following block of code:
# Image input
d0 = Input(shape=self.img_shape)
# Downsampling
d1 = conv2d(d0, self.gf, bn=False)
d2 = conv2d(d1, self.gf*2)
d3 = conv2d(d2, self.gf*4)
d4 = conv2d(d3, self.gf*8)
d5 = conv2d(d4, self.gf*8)
d6 = conv2d(d5, self.gf*8)
d7 = conv2d(d6, self.gf*8)
# Upsampling
u1 = deconv2d(d7, d6, self.gf*8)
u2 = deconv2d(u1, d5, self.gf*8)
u3 = deconv2d(u2, d4, self.gf*8)
u4 = deconv2d(u3, d3, self.gf*4)
u5 = deconv2d(u4, d2, self.gf*2)
u6 = deconv2d(u5, d1, self.gf)
where conv2d and deconv2d are the following:
def conv2d(layer_input, filters, f_size=4, bn=True):
"""Layers used during downsampling"""
d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if bn:
d = BatchNormalization(momentum=0.8)(d)
return d
def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0):
"""Layers used during upsampling"""
u = UpSampling2D(size=2)(layer_input)
u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u)
if dropout_rate:
u = Dropout(dropout_rate)(u)
u = BatchNormalization(momentum=0.8)(u)
u = Concatenate()([u, skip_input])
return u
keras
add a comment |
I have been using this Keras-GAN repository, specifically its pix2pix package for image-to-image translation. It works great when the input shape is a standard (256,256), and also works with the (28,28) MNIST data. However, when I try with inputs of shape (196,208), I get the following ValueError:
A 'Concatenate' layer requires inputs with matching shapes except for the concat axis. Got inputs shapes: [(None, 8, 8, 512), (None, 7, 7, 512)]
For some context, the Concatenate function is being called in the following block of code:
# Image input
d0 = Input(shape=self.img_shape)
# Downsampling
d1 = conv2d(d0, self.gf, bn=False)
d2 = conv2d(d1, self.gf*2)
d3 = conv2d(d2, self.gf*4)
d4 = conv2d(d3, self.gf*8)
d5 = conv2d(d4, self.gf*8)
d6 = conv2d(d5, self.gf*8)
d7 = conv2d(d6, self.gf*8)
# Upsampling
u1 = deconv2d(d7, d6, self.gf*8)
u2 = deconv2d(u1, d5, self.gf*8)
u3 = deconv2d(u2, d4, self.gf*8)
u4 = deconv2d(u3, d3, self.gf*4)
u5 = deconv2d(u4, d2, self.gf*2)
u6 = deconv2d(u5, d1, self.gf)
where conv2d and deconv2d are the following:
def conv2d(layer_input, filters, f_size=4, bn=True):
"""Layers used during downsampling"""
d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if bn:
d = BatchNormalization(momentum=0.8)(d)
return d
def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0):
"""Layers used during upsampling"""
u = UpSampling2D(size=2)(layer_input)
u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u)
if dropout_rate:
u = Dropout(dropout_rate)(u)
u = BatchNormalization(momentum=0.8)(u)
u = Concatenate()([u, skip_input])
return u
keras
add a comment |
I have been using this Keras-GAN repository, specifically its pix2pix package for image-to-image translation. It works great when the input shape is a standard (256,256), and also works with the (28,28) MNIST data. However, when I try with inputs of shape (196,208), I get the following ValueError:
A 'Concatenate' layer requires inputs with matching shapes except for the concat axis. Got inputs shapes: [(None, 8, 8, 512), (None, 7, 7, 512)]
For some context, the Concatenate function is being called in the following block of code:
# Image input
d0 = Input(shape=self.img_shape)
# Downsampling
d1 = conv2d(d0, self.gf, bn=False)
d2 = conv2d(d1, self.gf*2)
d3 = conv2d(d2, self.gf*4)
d4 = conv2d(d3, self.gf*8)
d5 = conv2d(d4, self.gf*8)
d6 = conv2d(d5, self.gf*8)
d7 = conv2d(d6, self.gf*8)
# Upsampling
u1 = deconv2d(d7, d6, self.gf*8)
u2 = deconv2d(u1, d5, self.gf*8)
u3 = deconv2d(u2, d4, self.gf*8)
u4 = deconv2d(u3, d3, self.gf*4)
u5 = deconv2d(u4, d2, self.gf*2)
u6 = deconv2d(u5, d1, self.gf)
where conv2d and deconv2d are the following:
def conv2d(layer_input, filters, f_size=4, bn=True):
"""Layers used during downsampling"""
d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if bn:
d = BatchNormalization(momentum=0.8)(d)
return d
def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0):
"""Layers used during upsampling"""
u = UpSampling2D(size=2)(layer_input)
u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u)
if dropout_rate:
u = Dropout(dropout_rate)(u)
u = BatchNormalization(momentum=0.8)(u)
u = Concatenate()([u, skip_input])
return u
keras
I have been using this Keras-GAN repository, specifically its pix2pix package for image-to-image translation. It works great when the input shape is a standard (256,256), and also works with the (28,28) MNIST data. However, when I try with inputs of shape (196,208), I get the following ValueError:
A 'Concatenate' layer requires inputs with matching shapes except for the concat axis. Got inputs shapes: [(None, 8, 8, 512), (None, 7, 7, 512)]
For some context, the Concatenate function is being called in the following block of code:
# Image input
d0 = Input(shape=self.img_shape)
# Downsampling
d1 = conv2d(d0, self.gf, bn=False)
d2 = conv2d(d1, self.gf*2)
d3 = conv2d(d2, self.gf*4)
d4 = conv2d(d3, self.gf*8)
d5 = conv2d(d4, self.gf*8)
d6 = conv2d(d5, self.gf*8)
d7 = conv2d(d6, self.gf*8)
# Upsampling
u1 = deconv2d(d7, d6, self.gf*8)
u2 = deconv2d(u1, d5, self.gf*8)
u3 = deconv2d(u2, d4, self.gf*8)
u4 = deconv2d(u3, d3, self.gf*4)
u5 = deconv2d(u4, d2, self.gf*2)
u6 = deconv2d(u5, d1, self.gf)
where conv2d and deconv2d are the following:
def conv2d(layer_input, filters, f_size=4, bn=True):
"""Layers used during downsampling"""
d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if bn:
d = BatchNormalization(momentum=0.8)(d)
return d
def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0):
"""Layers used during upsampling"""
u = UpSampling2D(size=2)(layer_input)
u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u)
if dropout_rate:
u = Dropout(dropout_rate)(u)
u = BatchNormalization(momentum=0.8)(u)
u = Concatenate()([u, skip_input])
return u
keras
keras
asked Mar 24 at 19:00
Nick LNick L
11
11
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55327402%2fhow-to-make-keras-gan-work-with-non-standard-input-shape%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55327402%2fhow-to-make-keras-gan-work-with-non-standard-input-shape%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown