Skip to main content

Logaritmo binario Índice Dominio y rango entero del Logaritmo binario Utilizando calculadora Véase también Referencias Enlaces externos Menú de navegación«Binary Logarithm»

Funciones especialesLogaritmos


matemáticafunción matemáticalogaritmosinformáticaLatínbinariabitsanálisis de algoritmosalgoritmosestructura de datosbúsqueda binariaárbol binario de búsquedacalculadoralogaritmo naturallogaritmo comúnfórmula












Logaritmo binario




De Wikipedia, la enciclopedia libre






Ir a la navegación
Ir a la búsqueda




Gráfica de log2⁡xdisplaystyle log _2x


En matemática el logaritmo binario o logaritmo en base 2: y=log2⁡(x)displaystyle y=log _2(x) es la función matemática que determina a que valor y hay que elevarse a 2 para obtener x, es un caso particular de logaritmos en el que la base es 2.


Esta base tiene su importancia en informática (donde se lo representa comúnmente como lg n, o ld n que proviene del Latín logarithmus dualis), dada la codificación binaria que se utiliza. Así por ejemplo con un número determinado de bits, ocho por ejemplo, se puede codificar una cantidad de información equivalente a 28=256displaystyle 2^8=256, que es el número de variaciones que se pueden realizar con 0 y 1 en ocho posiciones.
El uso del logaritmo binario, es útil cuando la información a calcular es la contraria: cuantas posiciones binarias y se necesitarán si se tiene que codificar x datos, direcciones, etc.


Con el ejemplo anterior para codificar 256 direcciones son necesarios log2⁡(256)=8 bitsdisplaystyle log _2(256)=8text bits.


El logaritmo binario aparece frecuentemente en el análisis de algoritmos. Si un número n mayor que 1 es dividido por 2 repetidamente, el número de iteraciones necesitadas para obtener un valor de al menos 1 es la parte entera del lg n. Esta idea es utilizada en el análisis de varios algoritmos y estructura de datos. Por ejemplo en la búsqueda binaria, el tamaño del problema que resolver es dividido en mitades en cada iteración, y por lo tanto se necesitarán lg n iteraciones para resolver un problema de tamaño n. Similarmente, un árbol binario de búsqueda que contenga n elementos tiene una altura de lg n+1.




Índice





  • 1 Dominio y rango entero del Logaritmo binario


  • 2 Utilizando calculadora

    • 2.1 Demostración



  • 3 Véase también


  • 4 Referencias


  • 5 Enlaces externos




Dominio y rango entero del Logaritmo binario


En dominio y rango entero, el logaritmo binario puede ser calculado con redondeo hacia arriba, o redondeo hacia abajo. Esas dos formas de logaritmos binarios enteros están relacionados a través de esta fórmula:



⌊log2⁡(n)⌋=⌈log2⁡(n+1)⌉−1,donde n≥1.displaystyle lfloor log _2(n)rfloor =lceil log _2(n+1)rceil -1,mboxdonde ngeq 1.[1]


Utilizando calculadora


Una forma simple para calcular el log2(n) en una calculadora que no posee la función log2 es utilizar el logaritmo natural (base e, indicado como ln) o el logaritmo común (base 10, indicado como log), los cuales se encuentran en la mayoría de las calculadoras científicas.
La fórmula para esto es:


log2⁡(n)=ln⁡(n)ln⁡(2)=log⁡(n)log⁡(2)displaystyle log _2(n)=frac ln(n)ln(2)=frac log(n)log(2)


Demostración


Para demostrar la relación anterior, partimos de:


y=log2⁡(n)displaystyle y=log _2(n),

que es lo mismo que:


n=2ydisplaystyle n=2^y,

tomando logaritmos:


ln⁡(n)=ln⁡(2y)displaystyle ln(n)=ln(2^y),

por la propiedad de los logaritmos:


ln⁡(n)=y⋅ln⁡(2)displaystyle ln(n)=ycdot ln(2),

lo que resulta:


y=log2⁡(n)=ln⁡(n)ln⁡(2)displaystyle y=log _2(n)=frac ln(n)ln(2),

este resultado es independiente de la base de logaritmos que tomemos. Por lo que podemos generalizar:


loga⁡(n)=logb⁡(n)logb⁡(a)displaystyle log _a(n)=frac log _b(n)log _b(a),


Véase también


  • Logaritmo

  • Logaritmo en base imaginaria

  • Logaritmo de una matriz

  • Número e

  • Algoritmo

  • Potencia de dos


Referencias



  1. Warren Jr., Henry S. (2002). Hacker's Delight. Addison Wesley. p. 83. ISBN 978-0201914658. 



Enlaces externos



  • Weisstein, Eric W. «Binary Logarithm». En Weisstein, Eric W. MathWorld (en inglés). Wolfram Research. 



Obtenido de «https://es.wikipedia.org/w/index.php?title=Logaritmo_binario&oldid=114618078»










Menú de navegación


























(RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.088","walltime":"0.135","ppvisitednodes":"value":245,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":3581,"limit":2097152,"templateargumentsize":"value":47,"limit":2097152,"expansiondepth":"value":5,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":1571,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 49.517 1 -total"," 84.32% 41.752 1 Plantilla:Listaref"," 70.41% 34.867 1 Plantilla:Cita_libro"," 15.50% 7.675 1 Plantilla:MathWorld"," 10.47% 5.182 1 Plantilla:Cita_web"],"scribunto":"limitreport-timeusage":"value":"0.014","limit":"10.000","limitreport-memusage":"value":1306443,"limit":52428800,"cachereport":"origin":"mw1299","timestamp":"20190603215548","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Logaritmo binario","url":"https://es.wikipedia.org/wiki/Logaritmo_binario","sameAs":"http://www.wikidata.org/entity/Q581168","mainEntity":"http://www.wikidata.org/entity/Q581168","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2006-08-03T18:00:40Z","dateModified":"2019-03-16T01:58:06Z","image":"https://upload.wikimedia.org/wikipedia/commons/5/56/Binary_logarithm_plot.png","headline":"funciu00f3n matemu00e1tica"(RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":120,"wgHostname":"mw1319"););

Popular posts from this blog

Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현