Yolo-v3 tiny *.weights file contains less weights then expectedKeras model.to_json() error: 'rawunicodeescape' codec can't decode bytes in position 94-98: truncated uXXXXGetting predictions after training using darknetInvalidArgumentError with Keras and WGANsKeras and tensorflow concatenation and fitting errorOpenCV Yolo V3 tinyToo many parameters trying to rebuild VGG16layer mismatch in custom layer attention networkWhy replacing max pool by average pool using Keras APIs fails?Loss of CNN in Keras becomes nan at some point of training

How to take the beginning and end parts of a list with simpler syntax?

Does fossil fuels use since 1990 account for half of all the fossil fuels used in history?

My cat is a houdini

Submitting a new paper just after another was accepted by the same journal

Heating Margarine in Pan = loss of calories?

Simplification of numbers

Is there a way to encourage or even force airlines and booking engines to show options with overnight layovers?

Are 变 and 変 the same?

A continuous water "planet" ring around a star

Are differences between uniformly distributed numbers uniformly distributed?

An equality about sin function?

How do you deal with the emotions of not being the one to find the cause of a bug?

How much can I judge a company based on a phone screening?

How do I call a 6 digit Austrailian phone number with a US based mobile phone?

Are there really no countries that protect Freedom of Speech as the United States does?

Can renaming a method preserve encapsulation?

Running code generated in realtime in JavaScript with eval()

Boss asked a co-worker to assault me

Why is the Lucas test not recommended to differentiate higher alcohols?

If "more guns less crime", how do gun advocates explain that the EU has less crime than the US?

Translation of "I don't have anything to smile about"

Telephone number in spoken words

If I control a zombie (animated) does it get undead fortitude saves when it's reduced to 0 HP?

Help, I cannot decide when to start the story



Yolo-v3 tiny *.weights file contains less weights then expected


Keras model.to_json() error: 'rawunicodeescape' codec can't decode bytes in position 94-98: truncated uXXXXGetting predictions after training using darknetInvalidArgumentError with Keras and WGANsKeras and tensorflow concatenation and fitting errorOpenCV Yolo V3 tinyToo many parameters trying to rebuild VGG16layer mismatch in custom layer attention networkWhy replacing max pool by average pool using Keras APIs fails?Loss of CNN in Keras becomes nan at some point of training






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








0















I build a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.



Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.



Anyway the summary of my yolov3-tiny network is the following:



>>> model.summary()
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
Input (InputLayer) [(None, 416, 416, 3) 0
__________________________________________________________________________________________________
conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
__________________________________________________________________________________________________
norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
__________________________________________________________________________________________________
conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
__________________________________________________________________________________________________
norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
__________________________________________________________________________________________________
conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
__________________________________________________________________________________________________
conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
__________________________________________________________________________________________________
conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
__________________________________________________________________________________________________
norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
__________________________________________________________________________________________________
conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
__________________________________________________________________________________________________
norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
__________________________________________________________________________________________________
conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
__________________________________________________________________________________________________
norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
__________________________________________________________________________________________________
conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
__________________________________________________________________________________________________
norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
__________________________________________________________________________________________________
conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
__________________________________________________________________________________________________
norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
__________________________________________________________________________________________________
lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
norm_5[0][0]
__________________________________________________________________________________________________
conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
__________________________________________________________________________________________________
conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
__________________________________________________________________________________________________
norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
__________________________________________________________________________________________________
norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
__________________________________________________________________________________________________
conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
__________________________________________________________________________________________________
conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
__________________________________________________________________________________________________
lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
__________________________________________________________________________________________________
lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
lambda_2[0][0]
==================================================================================================
Total params: 8,861,918
Trainable params: 8,855,550
Non-trainable params: 6,368
__________________________________________________________________________________________________


and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?



Thank you.










share|improve this question
































    0















    I build a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.



    Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.



    Anyway the summary of my yolov3-tiny network is the following:



    >>> model.summary()
    Model: "model"
    __________________________________________________________________________________________________
    Layer (type) Output Shape Param # Connected to
    ==================================================================================================
    Input (InputLayer) [(None, 416, 416, 3) 0
    __________________________________________________________________________________________________
    conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
    __________________________________________________________________________________________________
    norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
    __________________________________________________________________________________________________
    max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
    __________________________________________________________________________________________________
    conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
    __________________________________________________________________________________________________
    norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
    __________________________________________________________________________________________________
    max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
    __________________________________________________________________________________________________
    conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
    __________________________________________________________________________________________________
    norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
    __________________________________________________________________________________________________
    max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
    __________________________________________________________________________________________________
    conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
    __________________________________________________________________________________________________
    norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
    __________________________________________________________________________________________________
    max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
    __________________________________________________________________________________________________
    conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
    __________________________________________________________________________________________________
    norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
    __________________________________________________________________________________________________
    max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
    __________________________________________________________________________________________________
    conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
    __________________________________________________________________________________________________
    norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
    __________________________________________________________________________________________________
    max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
    __________________________________________________________________________________________________
    conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
    __________________________________________________________________________________________________
    norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
    __________________________________________________________________________________________________
    conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
    __________________________________________________________________________________________________
    norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
    __________________________________________________________________________________________________
    conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
    __________________________________________________________________________________________________
    norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
    __________________________________________________________________________________________________
    lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
    __________________________________________________________________________________________________
    concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
    norm_5[0][0]
    __________________________________________________________________________________________________
    conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
    __________________________________________________________________________________________________
    conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
    __________________________________________________________________________________________________
    norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
    __________________________________________________________________________________________________
    norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
    __________________________________________________________________________________________________
    conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
    __________________________________________________________________________________________________
    conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
    __________________________________________________________________________________________________
    lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
    __________________________________________________________________________________________________
    lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
    __________________________________________________________________________________________________
    concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
    lambda_2[0][0]
    ==================================================================================================
    Total params: 8,861,918
    Trainable params: 8,855,550
    Non-trainable params: 6,368
    __________________________________________________________________________________________________


    and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?



    Thank you.










    share|improve this question




























      0












      0








      0


      1






      I build a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.



      Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.



      Anyway the summary of my yolov3-tiny network is the following:



      >>> model.summary()
      Model: "model"
      __________________________________________________________________________________________________
      Layer (type) Output Shape Param # Connected to
      ==================================================================================================
      Input (InputLayer) [(None, 416, 416, 3) 0
      __________________________________________________________________________________________________
      conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
      __________________________________________________________________________________________________
      norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
      __________________________________________________________________________________________________
      max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
      __________________________________________________________________________________________________
      conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
      __________________________________________________________________________________________________
      norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
      __________________________________________________________________________________________________
      conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
      __________________________________________________________________________________________________
      norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
      __________________________________________________________________________________________________
      conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
      __________________________________________________________________________________________________
      norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
      __________________________________________________________________________________________________
      conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
      __________________________________________________________________________________________________
      norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
      __________________________________________________________________________________________________
      conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
      __________________________________________________________________________________________________
      norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
      __________________________________________________________________________________________________
      conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
      __________________________________________________________________________________________________
      norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
      __________________________________________________________________________________________________
      conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
      __________________________________________________________________________________________________
      norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
      __________________________________________________________________________________________________
      conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
      __________________________________________________________________________________________________
      norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
      __________________________________________________________________________________________________
      lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
      __________________________________________________________________________________________________
      concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
      norm_5[0][0]
      __________________________________________________________________________________________________
      conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
      __________________________________________________________________________________________________
      conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
      __________________________________________________________________________________________________
      norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
      __________________________________________________________________________________________________
      norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
      __________________________________________________________________________________________________
      conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
      __________________________________________________________________________________________________
      conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
      __________________________________________________________________________________________________
      lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
      __________________________________________________________________________________________________
      lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
      __________________________________________________________________________________________________
      concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
      lambda_2[0][0]
      ==================================================================================================
      Total params: 8,861,918
      Trainable params: 8,855,550
      Non-trainable params: 6,368
      __________________________________________________________________________________________________


      and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?



      Thank you.










      share|improve this question
















      I build a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.



      Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.



      Anyway the summary of my yolov3-tiny network is the following:



      >>> model.summary()
      Model: "model"
      __________________________________________________________________________________________________
      Layer (type) Output Shape Param # Connected to
      ==================================================================================================
      Input (InputLayer) [(None, 416, 416, 3) 0
      __________________________________________________________________________________________________
      conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
      __________________________________________________________________________________________________
      norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
      __________________________________________________________________________________________________
      max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
      __________________________________________________________________________________________________
      conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
      __________________________________________________________________________________________________
      norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
      __________________________________________________________________________________________________
      conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
      __________________________________________________________________________________________________
      norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
      __________________________________________________________________________________________________
      conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
      __________________________________________________________________________________________________
      norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
      __________________________________________________________________________________________________
      conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
      __________________________________________________________________________________________________
      norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
      __________________________________________________________________________________________________
      conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
      __________________________________________________________________________________________________
      norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
      __________________________________________________________________________________________________
      conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
      __________________________________________________________________________________________________
      norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
      __________________________________________________________________________________________________
      conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
      __________________________________________________________________________________________________
      norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
      __________________________________________________________________________________________________
      conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
      __________________________________________________________________________________________________
      norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
      __________________________________________________________________________________________________
      lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
      __________________________________________________________________________________________________
      concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
      norm_5[0][0]
      __________________________________________________________________________________________________
      conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
      __________________________________________________________________________________________________
      conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
      __________________________________________________________________________________________________
      norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
      __________________________________________________________________________________________________
      norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
      __________________________________________________________________________________________________
      conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
      __________________________________________________________________________________________________
      conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
      __________________________________________________________________________________________________
      lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
      __________________________________________________________________________________________________
      lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
      __________________________________________________________________________________________________
      concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
      lambda_2[0][0]
      ==================================================================================================
      Total params: 8,861,918
      Trainable params: 8,855,550
      Non-trainable params: 6,368
      __________________________________________________________________________________________________


      and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?



      Thank you.







      python tensorflow conv-neural-network yolo






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 28 at 8:40







      aleio1

















      asked Mar 27 at 10:20









      aleio1aleio1

      487 bronze badges




      487 bronze badges

























          1 Answer
          1






          active

          oldest

          votes


















          0














          For every conv layer with batch-normalization, you mistake using bias(b). In yolo, conv layer followed by batchnorm don't have bias. For example, for conv_1 layer, the correct para number should be 3*3*3*16=432, while in your model, it's 432+16=448.






          share|improve this answer


























            Your Answer






            StackExchange.ifUsing("editor", function ()
            StackExchange.using("externalEditor", function ()
            StackExchange.using("snippets", function ()
            StackExchange.snippets.init();
            );
            );
            , "code-snippets");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "1"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55374814%2fyolo-v3-tiny-weights-file-contains-less-weights-then-expected%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            For every conv layer with batch-normalization, you mistake using bias(b). In yolo, conv layer followed by batchnorm don't have bias. For example, for conv_1 layer, the correct para number should be 3*3*3*16=432, while in your model, it's 432+16=448.






            share|improve this answer































              0














              For every conv layer with batch-normalization, you mistake using bias(b). In yolo, conv layer followed by batchnorm don't have bias. For example, for conv_1 layer, the correct para number should be 3*3*3*16=432, while in your model, it's 432+16=448.






              share|improve this answer





























                0












                0








                0







                For every conv layer with batch-normalization, you mistake using bias(b). In yolo, conv layer followed by batchnorm don't have bias. For example, for conv_1 layer, the correct para number should be 3*3*3*16=432, while in your model, it's 432+16=448.






                share|improve this answer















                For every conv layer with batch-normalization, you mistake using bias(b). In yolo, conv layer followed by batchnorm don't have bias. For example, for conv_1 layer, the correct para number should be 3*3*3*16=432, while in your model, it's 432+16=448.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited May 23 at 13:29









                Dinesh Shingadiya

                9191 gold badge4 silver badges21 bronze badges




                9191 gold badge4 silver badges21 bronze badges










                answered May 23 at 11:41









                lordkTklordkTk

                1




                1





















                    Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.







                    Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.



















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55374814%2fyolo-v3-tiny-weights-file-contains-less-weights-then-expected%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

                    SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

                    은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현