How can we prove that any integral in the set of non-elementary integrals cannot be expressed in the form of elementary functions?Can every definite integral be expressed as a combination of elementary functions?Showing that an integral can not be expressed in terms of elementary functionsRepresent an Integral by non-elementary functionsWhat does it mean when an integral cannot be solved in terms of elementary functions?Prove that primitives of $fracx^3rm e^x - 1$ have no closed form in terms of elementary functionsCan you add new functions to the set of elementary functions such that every function has an anti-derivative?Can a change of variable result in the evaluation of an integral in terms of elementary functions, whereas before the c.o.v. this was not possible?Can I create a set of new elementary functions such that their integral is an elementary function?How to prove $int frac1(xsin(x))^2,dx$ doesnt have an elementary closed form?Is the set of elementary functions which do not have elementary integrals bigger than set of elementary functions which have elementary integrals?

Very slow boot time and poor perfomance

Does this VCO produce a sine wave or square wave

Why do these two functions have the same bytecode when disassembled under dis.dis?

Breaker Mapping Questions

What are the occurences of total war in the Native Americans?

Is gzip atomic?

The Wires Underground

about to retire but not retired yet, employed but not working any more

How do I make my image comply with the requirements of this photography competition?

Where does learning new skills fit into Agile?

Why are non-collision-resistant hash functions considered insecure for signing self-generated information

How can I unambiguously ask for a new user's "Display Name"?

Removal of て in Japanese novels

Do Bayesian credible intervals treat the estimated parameter as a random variable?

Cooking Scrambled Eggs

“T” in subscript in formulas

How to gently end involvement with an online community?

Handling Disruptive Student on the Autism Spectrum

Immediate Smaller Element Time Limit Exceeded

Ordering a list of integers

When, exactly, does the Rogue Scout get to use their Skirmisher ability?

Does ostensible/specious make sense in this sentence?

Are the players on the same team as the DM?

HJM in infinite dimensions



How can we prove that any integral in the set of non-elementary integrals cannot be expressed in the form of elementary functions?


Can every definite integral be expressed as a combination of elementary functions?Showing that an integral can not be expressed in terms of elementary functionsRepresent an Integral by non-elementary functionsWhat does it mean when an integral cannot be solved in terms of elementary functions?Prove that primitives of $fracx^3rm e^x - 1$ have no closed form in terms of elementary functionsCan you add new functions to the set of elementary functions such that every function has an anti-derivative?Can a change of variable result in the evaluation of an integral in terms of elementary functions, whereas before the c.o.v. this was not possible?Can I create a set of new elementary functions such that their integral is an elementary function?How to prove $int frac1(xsin(x))^2,dx$ doesnt have an elementary closed form?Is the set of elementary functions which do not have elementary integrals bigger than set of elementary functions which have elementary integrals?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








5












$begingroup$


We know that the derivative of some non-elementary functions can be expressed in elementary functions. For example $ fracddx Si(x)= fracsin(x)x $



So similarly are there any non-elementary functions whose integrals can be expressed in elementary functions?



If not then how can we prove that any integral in the set of non-elementary integrals cannot be expressed in the form of elementary functions?










share|cite|improve this question











$endgroup$









  • 2




    $begingroup$
    Differential algebra is a galois like approach to proving such things. pdfs.semanticscholar.org/3d42/…
    $endgroup$
    – Charlie Frohman
    Mar 27 at 18:16

















5












$begingroup$


We know that the derivative of some non-elementary functions can be expressed in elementary functions. For example $ fracddx Si(x)= fracsin(x)x $



So similarly are there any non-elementary functions whose integrals can be expressed in elementary functions?



If not then how can we prove that any integral in the set of non-elementary integrals cannot be expressed in the form of elementary functions?










share|cite|improve this question











$endgroup$









  • 2




    $begingroup$
    Differential algebra is a galois like approach to proving such things. pdfs.semanticscholar.org/3d42/…
    $endgroup$
    – Charlie Frohman
    Mar 27 at 18:16













5












5








5


1



$begingroup$


We know that the derivative of some non-elementary functions can be expressed in elementary functions. For example $ fracddx Si(x)= fracsin(x)x $



So similarly are there any non-elementary functions whose integrals can be expressed in elementary functions?



If not then how can we prove that any integral in the set of non-elementary integrals cannot be expressed in the form of elementary functions?










share|cite|improve this question











$endgroup$




We know that the derivative of some non-elementary functions can be expressed in elementary functions. For example $ fracddx Si(x)= fracsin(x)x $



So similarly are there any non-elementary functions whose integrals can be expressed in elementary functions?



If not then how can we prove that any integral in the set of non-elementary integrals cannot be expressed in the form of elementary functions?







calculus integration proof-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 27 at 18:20









Bernard

131k7 gold badges43 silver badges124 bronze badges




131k7 gold badges43 silver badges124 bronze badges










asked Mar 27 at 18:11









Rithik KapoorRithik Kapoor

34213 bronze badges




34213 bronze badges










  • 2




    $begingroup$
    Differential algebra is a galois like approach to proving such things. pdfs.semanticscholar.org/3d42/…
    $endgroup$
    – Charlie Frohman
    Mar 27 at 18:16












  • 2




    $begingroup$
    Differential algebra is a galois like approach to proving such things. pdfs.semanticscholar.org/3d42/…
    $endgroup$
    – Charlie Frohman
    Mar 27 at 18:16







2




2




$begingroup$
Differential algebra is a galois like approach to proving such things. pdfs.semanticscholar.org/3d42/…
$endgroup$
– Charlie Frohman
Mar 27 at 18:16




$begingroup$
Differential algebra is a galois like approach to proving such things. pdfs.semanticscholar.org/3d42/…
$endgroup$
– Charlie Frohman
Mar 27 at 18:16










3 Answers
3






active

oldest

votes


















10













$begingroup$

The derivative of an elementary function is an elementary function: the standard Calculus 1 differentiation methods can be used to find this derivative. So an antiderivative of a non-elementary function can't be elementary.



EDIT: More formally, by definition an elementary function is obtained from
complex constants and the variable $x$ by a finite number of steps of the following forms:



  1. If $f_1$ and $f_2$ are elementary functions, then $f_1 + f_2$, $f_1 f_2$ and (if $f_2 ne 0$) $f_1/f_2$ are elementary.

  2. If $P$ is a non-constant polynomial whose coefficients are elementary functions, then a function $f$ such that $P(f) = 0$ is an elementary function.

  3. If $g$ is an elementary function, then a function $f$ such that $f' = g' f$ or $f' = g'/g$ is elementary (this is how $e^g$ and $log g$ are elementary).

To prove that the derivative of an elementary function, you can use induction on the number of these steps. In the induction step, suppose
the result is true for elementary functions obtained in at most $n$ steps.
If $f$ can be obtained in $n+1$ steps, the last being $f = f_1 + f_2$ where $f_1$ and $f_2$ each require at most $n$ steps, then $f' = f_1' + f_2'$ where $f_1'$ and $f_2'$ are elementary, and therefore $f'$ is elementary. Similarly for the other possibilities for the last step.






share|cite|improve this answer











$endgroup$














  • $begingroup$
    Okay then how can we prove the derivative of an elementary function is always an elementary function?
    $endgroup$
    – Rithik Kapoor
    Mar 27 at 18:26










  • $begingroup$
    @RithikKapoor Frankly sir, common sense. Writing an explicit formal proof might be tricky but we already know that any composition of elementary functions can be handled with the chain, product, division, and addition rules. If you're asking how to formalize it, fair enough. However if you are asking "How do I know this is true" then it follows by simple observance.
    $endgroup$
    – The Great Duck
    Mar 28 at 0:28










  • $begingroup$
    Query. What if we include the Heaviside step function as an elementary function? Would this have any affect on the answer?
    $endgroup$
    – The Great Duck
    Mar 28 at 0:29










  • $begingroup$
    @TheGreatDuck, before anything else, what would you say about the function $fracx+sqrtx^22x$?
    $endgroup$
    – J. M. is a poor mathematician
    Mar 28 at 2:46










  • $begingroup$
    The Heaviside step function is elementary, according to (2), as it satisfies $f^2 - f = 0$.
    $endgroup$
    – Robert Israel
    Mar 28 at 3:01


















1













$begingroup$

No, the derivative of an elementary function is elementary; some integrals were defined specifically as the antiderivative of certain functions because that function otherwise would have no closed-form antiderivative.



An anti-derivative of a non-elementary function cannot be an elementary function.






share|cite|improve this answer









$endgroup$






















    1













    $begingroup$

    Yes, and I can provide a simple counter-example.



    Let $f(x)$ be piece-wise defined such that $f(x) = x^2$ for $x neq 0$ and such that $f(0) = 300$.



    This is not an elementary function. However its integral is $F(x) = frac 13x^3 + c$ which is elementary.



    For a slightly more "non-elementary" example just make $f(x) = -500$ whenever $x$ is an integer multiple of $n = 0.0001$. Feel free to keep decreasing $n$ to make the function messier and messier.



    However, if you want a continuous non-elementary $f$ then no. If $f$ is continuous then by one of the fundamental theorems of calculus $F'(x) = f(x)$ and the derivative of an elementary function is an elementary function. Furthermore, if you want that $f$ is an integral of some other $h$ then it follows that $f$ is continuous as the integral of any real valued function defined everywhere is a continuous function. So this will only work with discontinuous $f$'s that are not integrals of other functions.



    In short the set of derivatives of elementary functions $neq$ the set of anti-integrals of elementary functions.






    share|cite|improve this answer









    $endgroup$










    • 1




      $begingroup$
      Why is a piecewise function with elementary cases not elementary?
      $endgroup$
      – J. M. is a poor mathematician
      Mar 28 at 1:20










    • $begingroup$
      @J.M.isnotamathematician an infinite number of cases?
      $endgroup$
      – The Great Duck
      Mar 28 at 1:34






    • 1




      $begingroup$
      I am talking about your second sentence. You give a quadratic function with a hole and say that it is nonelementary.
      $endgroup$
      – J. M. is a poor mathematician
      Mar 28 at 1:43










    • $begingroup$
      @J.M.isnotamathematician As I said, there are much messier example and I gave one. The definition of elementary is tenuous at best. Provide a detailed analytical definition and I'll say whether something fits inside it. Until then, there's no real way to tell for sure. Elementary has imo always been a subjective concept. Regardless, I can easily keep cranking up the complexity on the counter-example so it doesn't change the result if I mis-identify some simpler function as being non-elementary.
      $endgroup$
      – The Great Duck
      Mar 28 at 1:47






    • 2




      $begingroup$
      "Elementary has imo always been a subjective concept." - in this regard at least, we are in agreement.
      $endgroup$
      – J. M. is a poor mathematician
      Mar 28 at 1:55













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164890%2fhow-can-we-prove-that-any-integral-in-the-set-of-non-elementary-integrals-cannot%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10













    $begingroup$

    The derivative of an elementary function is an elementary function: the standard Calculus 1 differentiation methods can be used to find this derivative. So an antiderivative of a non-elementary function can't be elementary.



    EDIT: More formally, by definition an elementary function is obtained from
    complex constants and the variable $x$ by a finite number of steps of the following forms:



    1. If $f_1$ and $f_2$ are elementary functions, then $f_1 + f_2$, $f_1 f_2$ and (if $f_2 ne 0$) $f_1/f_2$ are elementary.

    2. If $P$ is a non-constant polynomial whose coefficients are elementary functions, then a function $f$ such that $P(f) = 0$ is an elementary function.

    3. If $g$ is an elementary function, then a function $f$ such that $f' = g' f$ or $f' = g'/g$ is elementary (this is how $e^g$ and $log g$ are elementary).

    To prove that the derivative of an elementary function, you can use induction on the number of these steps. In the induction step, suppose
    the result is true for elementary functions obtained in at most $n$ steps.
    If $f$ can be obtained in $n+1$ steps, the last being $f = f_1 + f_2$ where $f_1$ and $f_2$ each require at most $n$ steps, then $f' = f_1' + f_2'$ where $f_1'$ and $f_2'$ are elementary, and therefore $f'$ is elementary. Similarly for the other possibilities for the last step.






    share|cite|improve this answer











    $endgroup$














    • $begingroup$
      Okay then how can we prove the derivative of an elementary function is always an elementary function?
      $endgroup$
      – Rithik Kapoor
      Mar 27 at 18:26










    • $begingroup$
      @RithikKapoor Frankly sir, common sense. Writing an explicit formal proof might be tricky but we already know that any composition of elementary functions can be handled with the chain, product, division, and addition rules. If you're asking how to formalize it, fair enough. However if you are asking "How do I know this is true" then it follows by simple observance.
      $endgroup$
      – The Great Duck
      Mar 28 at 0:28










    • $begingroup$
      Query. What if we include the Heaviside step function as an elementary function? Would this have any affect on the answer?
      $endgroup$
      – The Great Duck
      Mar 28 at 0:29










    • $begingroup$
      @TheGreatDuck, before anything else, what would you say about the function $fracx+sqrtx^22x$?
      $endgroup$
      – J. M. is a poor mathematician
      Mar 28 at 2:46










    • $begingroup$
      The Heaviside step function is elementary, according to (2), as it satisfies $f^2 - f = 0$.
      $endgroup$
      – Robert Israel
      Mar 28 at 3:01















    10













    $begingroup$

    The derivative of an elementary function is an elementary function: the standard Calculus 1 differentiation methods can be used to find this derivative. So an antiderivative of a non-elementary function can't be elementary.



    EDIT: More formally, by definition an elementary function is obtained from
    complex constants and the variable $x$ by a finite number of steps of the following forms:



    1. If $f_1$ and $f_2$ are elementary functions, then $f_1 + f_2$, $f_1 f_2$ and (if $f_2 ne 0$) $f_1/f_2$ are elementary.

    2. If $P$ is a non-constant polynomial whose coefficients are elementary functions, then a function $f$ such that $P(f) = 0$ is an elementary function.

    3. If $g$ is an elementary function, then a function $f$ such that $f' = g' f$ or $f' = g'/g$ is elementary (this is how $e^g$ and $log g$ are elementary).

    To prove that the derivative of an elementary function, you can use induction on the number of these steps. In the induction step, suppose
    the result is true for elementary functions obtained in at most $n$ steps.
    If $f$ can be obtained in $n+1$ steps, the last being $f = f_1 + f_2$ where $f_1$ and $f_2$ each require at most $n$ steps, then $f' = f_1' + f_2'$ where $f_1'$ and $f_2'$ are elementary, and therefore $f'$ is elementary. Similarly for the other possibilities for the last step.






    share|cite|improve this answer











    $endgroup$














    • $begingroup$
      Okay then how can we prove the derivative of an elementary function is always an elementary function?
      $endgroup$
      – Rithik Kapoor
      Mar 27 at 18:26










    • $begingroup$
      @RithikKapoor Frankly sir, common sense. Writing an explicit formal proof might be tricky but we already know that any composition of elementary functions can be handled with the chain, product, division, and addition rules. If you're asking how to formalize it, fair enough. However if you are asking "How do I know this is true" then it follows by simple observance.
      $endgroup$
      – The Great Duck
      Mar 28 at 0:28










    • $begingroup$
      Query. What if we include the Heaviside step function as an elementary function? Would this have any affect on the answer?
      $endgroup$
      – The Great Duck
      Mar 28 at 0:29










    • $begingroup$
      @TheGreatDuck, before anything else, what would you say about the function $fracx+sqrtx^22x$?
      $endgroup$
      – J. M. is a poor mathematician
      Mar 28 at 2:46










    • $begingroup$
      The Heaviside step function is elementary, according to (2), as it satisfies $f^2 - f = 0$.
      $endgroup$
      – Robert Israel
      Mar 28 at 3:01













    10














    10










    10







    $begingroup$

    The derivative of an elementary function is an elementary function: the standard Calculus 1 differentiation methods can be used to find this derivative. So an antiderivative of a non-elementary function can't be elementary.



    EDIT: More formally, by definition an elementary function is obtained from
    complex constants and the variable $x$ by a finite number of steps of the following forms:



    1. If $f_1$ and $f_2$ are elementary functions, then $f_1 + f_2$, $f_1 f_2$ and (if $f_2 ne 0$) $f_1/f_2$ are elementary.

    2. If $P$ is a non-constant polynomial whose coefficients are elementary functions, then a function $f$ such that $P(f) = 0$ is an elementary function.

    3. If $g$ is an elementary function, then a function $f$ such that $f' = g' f$ or $f' = g'/g$ is elementary (this is how $e^g$ and $log g$ are elementary).

    To prove that the derivative of an elementary function, you can use induction on the number of these steps. In the induction step, suppose
    the result is true for elementary functions obtained in at most $n$ steps.
    If $f$ can be obtained in $n+1$ steps, the last being $f = f_1 + f_2$ where $f_1$ and $f_2$ each require at most $n$ steps, then $f' = f_1' + f_2'$ where $f_1'$ and $f_2'$ are elementary, and therefore $f'$ is elementary. Similarly for the other possibilities for the last step.






    share|cite|improve this answer











    $endgroup$



    The derivative of an elementary function is an elementary function: the standard Calculus 1 differentiation methods can be used to find this derivative. So an antiderivative of a non-elementary function can't be elementary.



    EDIT: More formally, by definition an elementary function is obtained from
    complex constants and the variable $x$ by a finite number of steps of the following forms:



    1. If $f_1$ and $f_2$ are elementary functions, then $f_1 + f_2$, $f_1 f_2$ and (if $f_2 ne 0$) $f_1/f_2$ are elementary.

    2. If $P$ is a non-constant polynomial whose coefficients are elementary functions, then a function $f$ such that $P(f) = 0$ is an elementary function.

    3. If $g$ is an elementary function, then a function $f$ such that $f' = g' f$ or $f' = g'/g$ is elementary (this is how $e^g$ and $log g$ are elementary).

    To prove that the derivative of an elementary function, you can use induction on the number of these steps. In the induction step, suppose
    the result is true for elementary functions obtained in at most $n$ steps.
    If $f$ can be obtained in $n+1$ steps, the last being $f = f_1 + f_2$ where $f_1$ and $f_2$ each require at most $n$ steps, then $f' = f_1' + f_2'$ where $f_1'$ and $f_2'$ are elementary, and therefore $f'$ is elementary. Similarly for the other possibilities for the last step.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Mar 27 at 18:46

























    answered Mar 27 at 18:16









    Robert IsraelRobert Israel

    346k23 gold badges241 silver badges503 bronze badges




    346k23 gold badges241 silver badges503 bronze badges














    • $begingroup$
      Okay then how can we prove the derivative of an elementary function is always an elementary function?
      $endgroup$
      – Rithik Kapoor
      Mar 27 at 18:26










    • $begingroup$
      @RithikKapoor Frankly sir, common sense. Writing an explicit formal proof might be tricky but we already know that any composition of elementary functions can be handled with the chain, product, division, and addition rules. If you're asking how to formalize it, fair enough. However if you are asking "How do I know this is true" then it follows by simple observance.
      $endgroup$
      – The Great Duck
      Mar 28 at 0:28










    • $begingroup$
      Query. What if we include the Heaviside step function as an elementary function? Would this have any affect on the answer?
      $endgroup$
      – The Great Duck
      Mar 28 at 0:29










    • $begingroup$
      @TheGreatDuck, before anything else, what would you say about the function $fracx+sqrtx^22x$?
      $endgroup$
      – J. M. is a poor mathematician
      Mar 28 at 2:46










    • $begingroup$
      The Heaviside step function is elementary, according to (2), as it satisfies $f^2 - f = 0$.
      $endgroup$
      – Robert Israel
      Mar 28 at 3:01
















    • $begingroup$
      Okay then how can we prove the derivative of an elementary function is always an elementary function?
      $endgroup$
      – Rithik Kapoor
      Mar 27 at 18:26










    • $begingroup$
      @RithikKapoor Frankly sir, common sense. Writing an explicit formal proof might be tricky but we already know that any composition of elementary functions can be handled with the chain, product, division, and addition rules. If you're asking how to formalize it, fair enough. However if you are asking "How do I know this is true" then it follows by simple observance.
      $endgroup$
      – The Great Duck
      Mar 28 at 0:28










    • $begingroup$
      Query. What if we include the Heaviside step function as an elementary function? Would this have any affect on the answer?
      $endgroup$
      – The Great Duck
      Mar 28 at 0:29










    • $begingroup$
      @TheGreatDuck, before anything else, what would you say about the function $fracx+sqrtx^22x$?
      $endgroup$
      – J. M. is a poor mathematician
      Mar 28 at 2:46










    • $begingroup$
      The Heaviside step function is elementary, according to (2), as it satisfies $f^2 - f = 0$.
      $endgroup$
      – Robert Israel
      Mar 28 at 3:01















    $begingroup$
    Okay then how can we prove the derivative of an elementary function is always an elementary function?
    $endgroup$
    – Rithik Kapoor
    Mar 27 at 18:26




    $begingroup$
    Okay then how can we prove the derivative of an elementary function is always an elementary function?
    $endgroup$
    – Rithik Kapoor
    Mar 27 at 18:26












    $begingroup$
    @RithikKapoor Frankly sir, common sense. Writing an explicit formal proof might be tricky but we already know that any composition of elementary functions can be handled with the chain, product, division, and addition rules. If you're asking how to formalize it, fair enough. However if you are asking "How do I know this is true" then it follows by simple observance.
    $endgroup$
    – The Great Duck
    Mar 28 at 0:28




    $begingroup$
    @RithikKapoor Frankly sir, common sense. Writing an explicit formal proof might be tricky but we already know that any composition of elementary functions can be handled with the chain, product, division, and addition rules. If you're asking how to formalize it, fair enough. However if you are asking "How do I know this is true" then it follows by simple observance.
    $endgroup$
    – The Great Duck
    Mar 28 at 0:28












    $begingroup$
    Query. What if we include the Heaviside step function as an elementary function? Would this have any affect on the answer?
    $endgroup$
    – The Great Duck
    Mar 28 at 0:29




    $begingroup$
    Query. What if we include the Heaviside step function as an elementary function? Would this have any affect on the answer?
    $endgroup$
    – The Great Duck
    Mar 28 at 0:29












    $begingroup$
    @TheGreatDuck, before anything else, what would you say about the function $fracx+sqrtx^22x$?
    $endgroup$
    – J. M. is a poor mathematician
    Mar 28 at 2:46




    $begingroup$
    @TheGreatDuck, before anything else, what would you say about the function $fracx+sqrtx^22x$?
    $endgroup$
    – J. M. is a poor mathematician
    Mar 28 at 2:46












    $begingroup$
    The Heaviside step function is elementary, according to (2), as it satisfies $f^2 - f = 0$.
    $endgroup$
    – Robert Israel
    Mar 28 at 3:01




    $begingroup$
    The Heaviside step function is elementary, according to (2), as it satisfies $f^2 - f = 0$.
    $endgroup$
    – Robert Israel
    Mar 28 at 3:01













    1













    $begingroup$

    No, the derivative of an elementary function is elementary; some integrals were defined specifically as the antiderivative of certain functions because that function otherwise would have no closed-form antiderivative.



    An anti-derivative of a non-elementary function cannot be an elementary function.






    share|cite|improve this answer









    $endgroup$



















      1













      $begingroup$

      No, the derivative of an elementary function is elementary; some integrals were defined specifically as the antiderivative of certain functions because that function otherwise would have no closed-form antiderivative.



      An anti-derivative of a non-elementary function cannot be an elementary function.






      share|cite|improve this answer









      $endgroup$

















        1














        1










        1







        $begingroup$

        No, the derivative of an elementary function is elementary; some integrals were defined specifically as the antiderivative of certain functions because that function otherwise would have no closed-form antiderivative.



        An anti-derivative of a non-elementary function cannot be an elementary function.






        share|cite|improve this answer









        $endgroup$



        No, the derivative of an elementary function is elementary; some integrals were defined specifically as the antiderivative of certain functions because that function otherwise would have no closed-form antiderivative.



        An anti-derivative of a non-elementary function cannot be an elementary function.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 27 at 18:18









        El EctricEl Ectric

        5794 silver badges17 bronze badges




        5794 silver badges17 bronze badges
























            1













            $begingroup$

            Yes, and I can provide a simple counter-example.



            Let $f(x)$ be piece-wise defined such that $f(x) = x^2$ for $x neq 0$ and such that $f(0) = 300$.



            This is not an elementary function. However its integral is $F(x) = frac 13x^3 + c$ which is elementary.



            For a slightly more "non-elementary" example just make $f(x) = -500$ whenever $x$ is an integer multiple of $n = 0.0001$. Feel free to keep decreasing $n$ to make the function messier and messier.



            However, if you want a continuous non-elementary $f$ then no. If $f$ is continuous then by one of the fundamental theorems of calculus $F'(x) = f(x)$ and the derivative of an elementary function is an elementary function. Furthermore, if you want that $f$ is an integral of some other $h$ then it follows that $f$ is continuous as the integral of any real valued function defined everywhere is a continuous function. So this will only work with discontinuous $f$'s that are not integrals of other functions.



            In short the set of derivatives of elementary functions $neq$ the set of anti-integrals of elementary functions.






            share|cite|improve this answer









            $endgroup$










            • 1




              $begingroup$
              Why is a piecewise function with elementary cases not elementary?
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:20










            • $begingroup$
              @J.M.isnotamathematician an infinite number of cases?
              $endgroup$
              – The Great Duck
              Mar 28 at 1:34






            • 1




              $begingroup$
              I am talking about your second sentence. You give a quadratic function with a hole and say that it is nonelementary.
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:43










            • $begingroup$
              @J.M.isnotamathematician As I said, there are much messier example and I gave one. The definition of elementary is tenuous at best. Provide a detailed analytical definition and I'll say whether something fits inside it. Until then, there's no real way to tell for sure. Elementary has imo always been a subjective concept. Regardless, I can easily keep cranking up the complexity on the counter-example so it doesn't change the result if I mis-identify some simpler function as being non-elementary.
              $endgroup$
              – The Great Duck
              Mar 28 at 1:47






            • 2




              $begingroup$
              "Elementary has imo always been a subjective concept." - in this regard at least, we are in agreement.
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:55















            1













            $begingroup$

            Yes, and I can provide a simple counter-example.



            Let $f(x)$ be piece-wise defined such that $f(x) = x^2$ for $x neq 0$ and such that $f(0) = 300$.



            This is not an elementary function. However its integral is $F(x) = frac 13x^3 + c$ which is elementary.



            For a slightly more "non-elementary" example just make $f(x) = -500$ whenever $x$ is an integer multiple of $n = 0.0001$. Feel free to keep decreasing $n$ to make the function messier and messier.



            However, if you want a continuous non-elementary $f$ then no. If $f$ is continuous then by one of the fundamental theorems of calculus $F'(x) = f(x)$ and the derivative of an elementary function is an elementary function. Furthermore, if you want that $f$ is an integral of some other $h$ then it follows that $f$ is continuous as the integral of any real valued function defined everywhere is a continuous function. So this will only work with discontinuous $f$'s that are not integrals of other functions.



            In short the set of derivatives of elementary functions $neq$ the set of anti-integrals of elementary functions.






            share|cite|improve this answer









            $endgroup$










            • 1




              $begingroup$
              Why is a piecewise function with elementary cases not elementary?
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:20










            • $begingroup$
              @J.M.isnotamathematician an infinite number of cases?
              $endgroup$
              – The Great Duck
              Mar 28 at 1:34






            • 1




              $begingroup$
              I am talking about your second sentence. You give a quadratic function with a hole and say that it is nonelementary.
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:43










            • $begingroup$
              @J.M.isnotamathematician As I said, there are much messier example and I gave one. The definition of elementary is tenuous at best. Provide a detailed analytical definition and I'll say whether something fits inside it. Until then, there's no real way to tell for sure. Elementary has imo always been a subjective concept. Regardless, I can easily keep cranking up the complexity on the counter-example so it doesn't change the result if I mis-identify some simpler function as being non-elementary.
              $endgroup$
              – The Great Duck
              Mar 28 at 1:47






            • 2




              $begingroup$
              "Elementary has imo always been a subjective concept." - in this regard at least, we are in agreement.
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:55













            1














            1










            1







            $begingroup$

            Yes, and I can provide a simple counter-example.



            Let $f(x)$ be piece-wise defined such that $f(x) = x^2$ for $x neq 0$ and such that $f(0) = 300$.



            This is not an elementary function. However its integral is $F(x) = frac 13x^3 + c$ which is elementary.



            For a slightly more "non-elementary" example just make $f(x) = -500$ whenever $x$ is an integer multiple of $n = 0.0001$. Feel free to keep decreasing $n$ to make the function messier and messier.



            However, if you want a continuous non-elementary $f$ then no. If $f$ is continuous then by one of the fundamental theorems of calculus $F'(x) = f(x)$ and the derivative of an elementary function is an elementary function. Furthermore, if you want that $f$ is an integral of some other $h$ then it follows that $f$ is continuous as the integral of any real valued function defined everywhere is a continuous function. So this will only work with discontinuous $f$'s that are not integrals of other functions.



            In short the set of derivatives of elementary functions $neq$ the set of anti-integrals of elementary functions.






            share|cite|improve this answer









            $endgroup$



            Yes, and I can provide a simple counter-example.



            Let $f(x)$ be piece-wise defined such that $f(x) = x^2$ for $x neq 0$ and such that $f(0) = 300$.



            This is not an elementary function. However its integral is $F(x) = frac 13x^3 + c$ which is elementary.



            For a slightly more "non-elementary" example just make $f(x) = -500$ whenever $x$ is an integer multiple of $n = 0.0001$. Feel free to keep decreasing $n$ to make the function messier and messier.



            However, if you want a continuous non-elementary $f$ then no. If $f$ is continuous then by one of the fundamental theorems of calculus $F'(x) = f(x)$ and the derivative of an elementary function is an elementary function. Furthermore, if you want that $f$ is an integral of some other $h$ then it follows that $f$ is continuous as the integral of any real valued function defined everywhere is a continuous function. So this will only work with discontinuous $f$'s that are not integrals of other functions.



            In short the set of derivatives of elementary functions $neq$ the set of anti-integrals of elementary functions.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 28 at 0:38









            The Great DuckThe Great Duck

            2723 gold badges20 silver badges48 bronze badges




            2723 gold badges20 silver badges48 bronze badges










            • 1




              $begingroup$
              Why is a piecewise function with elementary cases not elementary?
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:20










            • $begingroup$
              @J.M.isnotamathematician an infinite number of cases?
              $endgroup$
              – The Great Duck
              Mar 28 at 1:34






            • 1




              $begingroup$
              I am talking about your second sentence. You give a quadratic function with a hole and say that it is nonelementary.
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:43










            • $begingroup$
              @J.M.isnotamathematician As I said, there are much messier example and I gave one. The definition of elementary is tenuous at best. Provide a detailed analytical definition and I'll say whether something fits inside it. Until then, there's no real way to tell for sure. Elementary has imo always been a subjective concept. Regardless, I can easily keep cranking up the complexity on the counter-example so it doesn't change the result if I mis-identify some simpler function as being non-elementary.
              $endgroup$
              – The Great Duck
              Mar 28 at 1:47






            • 2




              $begingroup$
              "Elementary has imo always been a subjective concept." - in this regard at least, we are in agreement.
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:55












            • 1




              $begingroup$
              Why is a piecewise function with elementary cases not elementary?
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:20










            • $begingroup$
              @J.M.isnotamathematician an infinite number of cases?
              $endgroup$
              – The Great Duck
              Mar 28 at 1:34






            • 1




              $begingroup$
              I am talking about your second sentence. You give a quadratic function with a hole and say that it is nonelementary.
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:43










            • $begingroup$
              @J.M.isnotamathematician As I said, there are much messier example and I gave one. The definition of elementary is tenuous at best. Provide a detailed analytical definition and I'll say whether something fits inside it. Until then, there's no real way to tell for sure. Elementary has imo always been a subjective concept. Regardless, I can easily keep cranking up the complexity on the counter-example so it doesn't change the result if I mis-identify some simpler function as being non-elementary.
              $endgroup$
              – The Great Duck
              Mar 28 at 1:47






            • 2




              $begingroup$
              "Elementary has imo always been a subjective concept." - in this regard at least, we are in agreement.
              $endgroup$
              – J. M. is a poor mathematician
              Mar 28 at 1:55







            1




            1




            $begingroup$
            Why is a piecewise function with elementary cases not elementary?
            $endgroup$
            – J. M. is a poor mathematician
            Mar 28 at 1:20




            $begingroup$
            Why is a piecewise function with elementary cases not elementary?
            $endgroup$
            – J. M. is a poor mathematician
            Mar 28 at 1:20












            $begingroup$
            @J.M.isnotamathematician an infinite number of cases?
            $endgroup$
            – The Great Duck
            Mar 28 at 1:34




            $begingroup$
            @J.M.isnotamathematician an infinite number of cases?
            $endgroup$
            – The Great Duck
            Mar 28 at 1:34




            1




            1




            $begingroup$
            I am talking about your second sentence. You give a quadratic function with a hole and say that it is nonelementary.
            $endgroup$
            – J. M. is a poor mathematician
            Mar 28 at 1:43




            $begingroup$
            I am talking about your second sentence. You give a quadratic function with a hole and say that it is nonelementary.
            $endgroup$
            – J. M. is a poor mathematician
            Mar 28 at 1:43












            $begingroup$
            @J.M.isnotamathematician As I said, there are much messier example and I gave one. The definition of elementary is tenuous at best. Provide a detailed analytical definition and I'll say whether something fits inside it. Until then, there's no real way to tell for sure. Elementary has imo always been a subjective concept. Regardless, I can easily keep cranking up the complexity on the counter-example so it doesn't change the result if I mis-identify some simpler function as being non-elementary.
            $endgroup$
            – The Great Duck
            Mar 28 at 1:47




            $begingroup$
            @J.M.isnotamathematician As I said, there are much messier example and I gave one. The definition of elementary is tenuous at best. Provide a detailed analytical definition and I'll say whether something fits inside it. Until then, there's no real way to tell for sure. Elementary has imo always been a subjective concept. Regardless, I can easily keep cranking up the complexity on the counter-example so it doesn't change the result if I mis-identify some simpler function as being non-elementary.
            $endgroup$
            – The Great Duck
            Mar 28 at 1:47




            2




            2




            $begingroup$
            "Elementary has imo always been a subjective concept." - in this regard at least, we are in agreement.
            $endgroup$
            – J. M. is a poor mathematician
            Mar 28 at 1:55




            $begingroup$
            "Elementary has imo always been a subjective concept." - in this regard at least, we are in agreement.
            $endgroup$
            – J. M. is a poor mathematician
            Mar 28 at 1:55

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164890%2fhow-can-we-prove-that-any-integral-in-the-set-of-non-elementary-integrals-cannot%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

            Swift 4 - func physicsWorld not invoked on collision? The Next CEO of Stack OverflowHow to call Objective-C code from Swift#ifdef replacement in the Swift language@selector() in Swift?#pragma mark in Swift?Swift for loop: for index, element in array?dispatch_after - GCD in Swift?Swift Beta performance: sorting arraysSplit a String into an array in Swift?The use of Swift 3 @objc inference in Swift 4 mode is deprecated?How to optimize UITableViewCell, because my UITableView lags

            Access current req object everywhere in Node.js ExpressWhy are global variables considered bad practice? (node.js)Using req & res across functionsHow do I get the path to the current script with Node.js?What is Node.js' Connect, Express and “middleware”?Node.js w/ express error handling in callbackHow to access the GET parameters after “?” in Express?Modify Node.js req object parametersAccess “app” variable inside of ExpressJS/ConnectJS middleware?Node.js Express app - request objectAngular Http Module considered middleware?Session variables in ExpressJSAdd properties to the req object in expressjs with Typescript