Un-nesting a column data from bigquery?bigquery joins on nested repeatedQuery BigQuery nested/repeated fieldsFetch time series from Google BigQueryBigQuery new data type DATEHow to query arrays in bigquery?How to query json stored as string in bigquery table?How to use IFNULL() in BigQuery - Standard SQL?Connecting Column Based Time Partitioned BigQuery Table In Data StudioRolling 30 days of data from Big QueryBigQuery pricing: query data size (cost) calculation for record columns
What is the Radroute bicycle path?
Is my sink P-trap too low?
Does a large scratch in an ND filter affect image quality?
Make 2019 with single digits
What is the meaning of 「ぞんぞん」?
Where is it? - The Google Earth Challenge Ep. 3
What is a "major country" as named in Bernie Sanders' Healthcare debate answers?
What is the mathematical notation for rounding a given number to the nearest integer?
Is it appropriate to CC a lot of people on an email
Teleport everything in a large zone; or teleport all living things and make a lot of equipment disappear
How clean are pets?
Block diagram vs flow chart?
What's the benefit of prohibiting the use of techniques/language constructs that have not been taught?
Ethernet, Wifi and a little human psychology
What organs or modifications would be needed for a life biological creature not to require sleep?
Is there any reason to concentrate on the Thunderous Smite spell after using its effects?
What is this gigantic dish at Ben Gurion airport?
How do certain apps show new notifications when internet access is restricted to them?
Permutations in Disguise
How To Make Earth's Oceans as Brackish as Lyr's
How much would a 1 foot tall human weigh?
Why is the car dealer insisting on a loan instead of cash?
Insight into cavity resonators
How would you control supersoldiers in a late iron-age society?
Un-nesting a column data from bigquery?
bigquery joins on nested repeatedQuery BigQuery nested/repeated fieldsFetch time series from Google BigQueryBigQuery new data type DATEHow to query arrays in bigquery?How to query json stored as string in bigquery table?How to use IFNULL() in BigQuery - Standard SQL?Connecting Column Based Time Partitioned BigQuery Table In Data StudioRolling 30 days of data from Big QueryBigQuery pricing: query data size (cost) calculation for record columns
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
I am trying to fetch 2 columns from my data in big query. Below is my query:
SELECT user_id, ep FROM table_name limit 3
Now, event_params is a nested column. It has a key and value. Below is how the data looks like:
user_id ep.key ep.value.string_value ep.value.int_value
1 origin fcm null
2 origin fcm null
3 screen null 4
origin auto null
id null 97
Big query some how divides the column ep into key and values (stored in string or int). I would need data in the following format:
user_id ep.key ep.value
1 origin fcm
2 origin fcm
3 screen 4
origin auto
id 97
google-bigquery
add a comment
|
I am trying to fetch 2 columns from my data in big query. Below is my query:
SELECT user_id, ep FROM table_name limit 3
Now, event_params is a nested column. It has a key and value. Below is how the data looks like:
user_id ep.key ep.value.string_value ep.value.int_value
1 origin fcm null
2 origin fcm null
3 screen null 4
origin auto null
id null 97
Big query some how divides the column ep into key and values (stored in string or int). I would need data in the following format:
user_id ep.key ep.value
1 origin fcm
2 origin fcm
3 screen 4
origin auto
id 97
google-bigquery
add a comment
|
I am trying to fetch 2 columns from my data in big query. Below is my query:
SELECT user_id, ep FROM table_name limit 3
Now, event_params is a nested column. It has a key and value. Below is how the data looks like:
user_id ep.key ep.value.string_value ep.value.int_value
1 origin fcm null
2 origin fcm null
3 screen null 4
origin auto null
id null 97
Big query some how divides the column ep into key and values (stored in string or int). I would need data in the following format:
user_id ep.key ep.value
1 origin fcm
2 origin fcm
3 screen 4
origin auto
id 97
google-bigquery
I am trying to fetch 2 columns from my data in big query. Below is my query:
SELECT user_id, ep FROM table_name limit 3
Now, event_params is a nested column. It has a key and value. Below is how the data looks like:
user_id ep.key ep.value.string_value ep.value.int_value
1 origin fcm null
2 origin fcm null
3 screen null 4
origin auto null
id null 97
Big query some how divides the column ep into key and values (stored in string or int). I would need data in the following format:
user_id ep.key ep.value
1 origin fcm
2 origin fcm
3 screen 4
origin auto
id 97
google-bigquery
google-bigquery
asked Mar 28 at 12:16
nk23nk23
698 bronze badges
698 bronze badges
add a comment
|
add a comment
|
1 Answer
1
active
oldest
votes
Below is for BigQuery Standard SQL
#standardSQL
SELECT user_id,
ARRAY(
SELECT AS STRUCT ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
FROM UNNEST(ep) ep
) ep
FROM `project.dataset.table_name`
You can test, play with above using sample data from your question as in below example
#standardSQL
WITH `project.dataset.table_name` AS (
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
STRUCT('origin', STRUCT('auto', NULL)),
STRUCT('id', STRUCT(NULL, 97))
] ep
)
SELECT user_id,
ARRAY(
SELECT AS STRUCT ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
FROM UNNEST(ep) ep
) ep
FROM `project.dataset.table_name`
with result
Row user_id ep.key ep.value
1 1 origin fcm
2 2 origin fcm
3 3 screen 4
origin auto
vid 97
Another option can be useful in case if you need to group all rows with same user_id
#standardSQL
SELECT user_id,
ARRAY_AGG(STRUCT( ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
)) ep
FROM `project.dataset.table_name`, UNNEST(ep) ep
GROUP BY user_id
like in below example with extra row in sample data
#standardSQL
WITH `project.dataset.table_name` AS (
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin2', STRUCT('fcm2', NULL))] ep UNION ALL
SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
STRUCT('origin', STRUCT('auto', NULL)),
STRUCT('id', STRUCT(NULL, 97))
] ep
)
SELECT user_id,
ARRAY_AGG(STRUCT( ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
)) ep
FROM `project.dataset.table_name`, UNNEST(ep) ep
GROUP BY user_id
with result
Row user_id ep.key ep.value
1 1 origin fcm
origin2 fcm2
2 2 origin fcm
3 3 screen 4
origin auto
id 97
if you would run first option against same data you would get below result
Row user_id ep.key ep.value
1 1 origin fcm
2 1 origin2 fcm2
3 2 origin fcm
4 3 screen 4
origin auto
id 97
thanks you @Mikhail :)
– nk23
Mar 28 at 13:38
add a comment
|
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55397429%2fun-nesting-a-column-data-from-bigquery%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Below is for BigQuery Standard SQL
#standardSQL
SELECT user_id,
ARRAY(
SELECT AS STRUCT ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
FROM UNNEST(ep) ep
) ep
FROM `project.dataset.table_name`
You can test, play with above using sample data from your question as in below example
#standardSQL
WITH `project.dataset.table_name` AS (
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
STRUCT('origin', STRUCT('auto', NULL)),
STRUCT('id', STRUCT(NULL, 97))
] ep
)
SELECT user_id,
ARRAY(
SELECT AS STRUCT ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
FROM UNNEST(ep) ep
) ep
FROM `project.dataset.table_name`
with result
Row user_id ep.key ep.value
1 1 origin fcm
2 2 origin fcm
3 3 screen 4
origin auto
vid 97
Another option can be useful in case if you need to group all rows with same user_id
#standardSQL
SELECT user_id,
ARRAY_AGG(STRUCT( ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
)) ep
FROM `project.dataset.table_name`, UNNEST(ep) ep
GROUP BY user_id
like in below example with extra row in sample data
#standardSQL
WITH `project.dataset.table_name` AS (
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin2', STRUCT('fcm2', NULL))] ep UNION ALL
SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
STRUCT('origin', STRUCT('auto', NULL)),
STRUCT('id', STRUCT(NULL, 97))
] ep
)
SELECT user_id,
ARRAY_AGG(STRUCT( ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
)) ep
FROM `project.dataset.table_name`, UNNEST(ep) ep
GROUP BY user_id
with result
Row user_id ep.key ep.value
1 1 origin fcm
origin2 fcm2
2 2 origin fcm
3 3 screen 4
origin auto
id 97
if you would run first option against same data you would get below result
Row user_id ep.key ep.value
1 1 origin fcm
2 1 origin2 fcm2
3 2 origin fcm
4 3 screen 4
origin auto
id 97
thanks you @Mikhail :)
– nk23
Mar 28 at 13:38
add a comment
|
Below is for BigQuery Standard SQL
#standardSQL
SELECT user_id,
ARRAY(
SELECT AS STRUCT ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
FROM UNNEST(ep) ep
) ep
FROM `project.dataset.table_name`
You can test, play with above using sample data from your question as in below example
#standardSQL
WITH `project.dataset.table_name` AS (
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
STRUCT('origin', STRUCT('auto', NULL)),
STRUCT('id', STRUCT(NULL, 97))
] ep
)
SELECT user_id,
ARRAY(
SELECT AS STRUCT ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
FROM UNNEST(ep) ep
) ep
FROM `project.dataset.table_name`
with result
Row user_id ep.key ep.value
1 1 origin fcm
2 2 origin fcm
3 3 screen 4
origin auto
vid 97
Another option can be useful in case if you need to group all rows with same user_id
#standardSQL
SELECT user_id,
ARRAY_AGG(STRUCT( ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
)) ep
FROM `project.dataset.table_name`, UNNEST(ep) ep
GROUP BY user_id
like in below example with extra row in sample data
#standardSQL
WITH `project.dataset.table_name` AS (
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin2', STRUCT('fcm2', NULL))] ep UNION ALL
SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
STRUCT('origin', STRUCT('auto', NULL)),
STRUCT('id', STRUCT(NULL, 97))
] ep
)
SELECT user_id,
ARRAY_AGG(STRUCT( ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
)) ep
FROM `project.dataset.table_name`, UNNEST(ep) ep
GROUP BY user_id
with result
Row user_id ep.key ep.value
1 1 origin fcm
origin2 fcm2
2 2 origin fcm
3 3 screen 4
origin auto
id 97
if you would run first option against same data you would get below result
Row user_id ep.key ep.value
1 1 origin fcm
2 1 origin2 fcm2
3 2 origin fcm
4 3 screen 4
origin auto
id 97
thanks you @Mikhail :)
– nk23
Mar 28 at 13:38
add a comment
|
Below is for BigQuery Standard SQL
#standardSQL
SELECT user_id,
ARRAY(
SELECT AS STRUCT ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
FROM UNNEST(ep) ep
) ep
FROM `project.dataset.table_name`
You can test, play with above using sample data from your question as in below example
#standardSQL
WITH `project.dataset.table_name` AS (
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
STRUCT('origin', STRUCT('auto', NULL)),
STRUCT('id', STRUCT(NULL, 97))
] ep
)
SELECT user_id,
ARRAY(
SELECT AS STRUCT ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
FROM UNNEST(ep) ep
) ep
FROM `project.dataset.table_name`
with result
Row user_id ep.key ep.value
1 1 origin fcm
2 2 origin fcm
3 3 screen 4
origin auto
vid 97
Another option can be useful in case if you need to group all rows with same user_id
#standardSQL
SELECT user_id,
ARRAY_AGG(STRUCT( ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
)) ep
FROM `project.dataset.table_name`, UNNEST(ep) ep
GROUP BY user_id
like in below example with extra row in sample data
#standardSQL
WITH `project.dataset.table_name` AS (
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin2', STRUCT('fcm2', NULL))] ep UNION ALL
SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
STRUCT('origin', STRUCT('auto', NULL)),
STRUCT('id', STRUCT(NULL, 97))
] ep
)
SELECT user_id,
ARRAY_AGG(STRUCT( ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
)) ep
FROM `project.dataset.table_name`, UNNEST(ep) ep
GROUP BY user_id
with result
Row user_id ep.key ep.value
1 1 origin fcm
origin2 fcm2
2 2 origin fcm
3 3 screen 4
origin auto
id 97
if you would run first option against same data you would get below result
Row user_id ep.key ep.value
1 1 origin fcm
2 1 origin2 fcm2
3 2 origin fcm
4 3 screen 4
origin auto
id 97
Below is for BigQuery Standard SQL
#standardSQL
SELECT user_id,
ARRAY(
SELECT AS STRUCT ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
FROM UNNEST(ep) ep
) ep
FROM `project.dataset.table_name`
You can test, play with above using sample data from your question as in below example
#standardSQL
WITH `project.dataset.table_name` AS (
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
STRUCT('origin', STRUCT('auto', NULL)),
STRUCT('id', STRUCT(NULL, 97))
] ep
)
SELECT user_id,
ARRAY(
SELECT AS STRUCT ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
FROM UNNEST(ep) ep
) ep
FROM `project.dataset.table_name`
with result
Row user_id ep.key ep.value
1 1 origin fcm
2 2 origin fcm
3 3 screen 4
origin auto
vid 97
Another option can be useful in case if you need to group all rows with same user_id
#standardSQL
SELECT user_id,
ARRAY_AGG(STRUCT( ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
)) ep
FROM `project.dataset.table_name`, UNNEST(ep) ep
GROUP BY user_id
like in below example with extra row in sample data
#standardSQL
WITH `project.dataset.table_name` AS (
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin2', STRUCT('fcm2', NULL))] ep UNION ALL
SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
STRUCT('origin', STRUCT('auto', NULL)),
STRUCT('id', STRUCT(NULL, 97))
] ep
)
SELECT user_id,
ARRAY_AGG(STRUCT( ep.key AS key,
COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
)) ep
FROM `project.dataset.table_name`, UNNEST(ep) ep
GROUP BY user_id
with result
Row user_id ep.key ep.value
1 1 origin fcm
origin2 fcm2
2 2 origin fcm
3 3 screen 4
origin auto
id 97
if you would run first option against same data you would get below result
Row user_id ep.key ep.value
1 1 origin fcm
2 1 origin2 fcm2
3 2 origin fcm
4 3 screen 4
origin auto
id 97
edited Mar 28 at 12:46
answered Mar 28 at 12:34
Mikhail BerlyantMikhail Berlyant
73.1k4 gold badges46 silver badges85 bronze badges
73.1k4 gold badges46 silver badges85 bronze badges
thanks you @Mikhail :)
– nk23
Mar 28 at 13:38
add a comment
|
thanks you @Mikhail :)
– nk23
Mar 28 at 13:38
thanks you @Mikhail :)
– nk23
Mar 28 at 13:38
thanks you @Mikhail :)
– nk23
Mar 28 at 13:38
add a comment
|
Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.
Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55397429%2fun-nesting-a-column-data-from-bigquery%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown