Un-nesting a column data from bigquery?bigquery joins on nested repeatedQuery BigQuery nested/repeated fieldsFetch time series from Google BigQueryBigQuery new data type DATEHow to query arrays in bigquery?How to query json stored as string in bigquery table?How to use IFNULL() in BigQuery - Standard SQL?Connecting Column Based Time Partitioned BigQuery Table In Data StudioRolling 30 days of data from Big QueryBigQuery pricing: query data size (cost) calculation for record columns

What is the Radroute bicycle path?

Is my sink P-trap too low?

Does a large scratch in an ND filter affect image quality?

Make 2019 with single digits

What is the meaning of 「ぞんぞん」?

Where is it? - The Google Earth Challenge Ep. 3

What is a "major country" as named in Bernie Sanders' Healthcare debate answers?

What is the mathematical notation for rounding a given number to the nearest integer?

Is it appropriate to CC a lot of people on an email

Teleport everything in a large zone; or teleport all living things and make a lot of equipment disappear

How clean are pets?

Block diagram vs flow chart?

What's the benefit of prohibiting the use of techniques/language constructs that have not been taught?

Ethernet, Wifi and a little human psychology

What organs or modifications would be needed for a life biological creature not to require sleep?

Is there any reason to concentrate on the Thunderous Smite spell after using its effects?

What is this gigantic dish at Ben Gurion airport?

How do certain apps show new notifications when internet access is restricted to them?

Permutations in Disguise

How To Make Earth's Oceans as Brackish as Lyr's

How much would a 1 foot tall human weigh?

Why is the car dealer insisting on a loan instead of cash?

Insight into cavity resonators

How would you control supersoldiers in a late iron-age society?



Un-nesting a column data from bigquery?


bigquery joins on nested repeatedQuery BigQuery nested/repeated fieldsFetch time series from Google BigQueryBigQuery new data type DATEHow to query arrays in bigquery?How to query json stored as string in bigquery table?How to use IFNULL() in BigQuery - Standard SQL?Connecting Column Based Time Partitioned BigQuery Table In Data StudioRolling 30 days of data from Big QueryBigQuery pricing: query data size (cost) calculation for record columns






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1















I am trying to fetch 2 columns from my data in big query. Below is my query:



SELECT user_id, ep FROM table_name limit 3


Now, event_params is a nested column. It has a key and value. Below is how the data looks like:



user_id ep.key ep.value.string_value ep.value.int_value
1 origin fcm null
2 origin fcm null
3 screen null 4
origin auto null
id null 97


Big query some how divides the column ep into key and values (stored in string or int). I would need data in the following format:



user_id ep.key ep.value
1 origin fcm
2 origin fcm
3 screen 4
origin auto
id 97









share|improve this question






























    1















    I am trying to fetch 2 columns from my data in big query. Below is my query:



    SELECT user_id, ep FROM table_name limit 3


    Now, event_params is a nested column. It has a key and value. Below is how the data looks like:



    user_id ep.key ep.value.string_value ep.value.int_value
    1 origin fcm null
    2 origin fcm null
    3 screen null 4
    origin auto null
    id null 97


    Big query some how divides the column ep into key and values (stored in string or int). I would need data in the following format:



    user_id ep.key ep.value
    1 origin fcm
    2 origin fcm
    3 screen 4
    origin auto
    id 97









    share|improve this question


























      1












      1








      1








      I am trying to fetch 2 columns from my data in big query. Below is my query:



      SELECT user_id, ep FROM table_name limit 3


      Now, event_params is a nested column. It has a key and value. Below is how the data looks like:



      user_id ep.key ep.value.string_value ep.value.int_value
      1 origin fcm null
      2 origin fcm null
      3 screen null 4
      origin auto null
      id null 97


      Big query some how divides the column ep into key and values (stored in string or int). I would need data in the following format:



      user_id ep.key ep.value
      1 origin fcm
      2 origin fcm
      3 screen 4
      origin auto
      id 97









      share|improve this question














      I am trying to fetch 2 columns from my data in big query. Below is my query:



      SELECT user_id, ep FROM table_name limit 3


      Now, event_params is a nested column. It has a key and value. Below is how the data looks like:



      user_id ep.key ep.value.string_value ep.value.int_value
      1 origin fcm null
      2 origin fcm null
      3 screen null 4
      origin auto null
      id null 97


      Big query some how divides the column ep into key and values (stored in string or int). I would need data in the following format:



      user_id ep.key ep.value
      1 origin fcm
      2 origin fcm
      3 screen 4
      origin auto
      id 97






      google-bigquery






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Mar 28 at 12:16









      nk23nk23

      698 bronze badges




      698 bronze badges

























          1 Answer
          1






          active

          oldest

          votes


















          2
















          Below is for BigQuery Standard SQL



          #standardSQL
          SELECT user_id,
          ARRAY(
          SELECT AS STRUCT ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          FROM UNNEST(ep) ep
          ) ep
          FROM `project.dataset.table_name`


          You can test, play with above using sample data from your question as in below example



          #standardSQL
          WITH `project.dataset.table_name` AS (
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
          STRUCT('origin', STRUCT('auto', NULL)),
          STRUCT('id', STRUCT(NULL, 97))
          ] ep
          )
          SELECT user_id,
          ARRAY(
          SELECT AS STRUCT ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          FROM UNNEST(ep) ep
          ) ep
          FROM `project.dataset.table_name`


          with result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          2 2 origin fcm
          3 3 screen 4
          origin auto
          vid 97


          Another option can be useful in case if you need to group all rows with same user_id



          #standardSQL
          SELECT user_id,
          ARRAY_AGG(STRUCT( ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          )) ep
          FROM `project.dataset.table_name`, UNNEST(ep) ep
          GROUP BY user_id


          like in below example with extra row in sample data



          #standardSQL
          WITH `project.dataset.table_name` AS (
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin2', STRUCT('fcm2', NULL))] ep UNION ALL
          SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
          STRUCT('origin', STRUCT('auto', NULL)),
          STRUCT('id', STRUCT(NULL, 97))
          ] ep
          )
          SELECT user_id,
          ARRAY_AGG(STRUCT( ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          )) ep
          FROM `project.dataset.table_name`, UNNEST(ep) ep
          GROUP BY user_id


          with result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          origin2 fcm2
          2 2 origin fcm
          3 3 screen 4
          origin auto
          id 97


          if you would run first option against same data you would get below result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          2 1 origin2 fcm2
          3 2 origin fcm
          4 3 screen 4
          origin auto
          id 97





          share|improve this answer



























          • thanks you @Mikhail :)

            – nk23
            Mar 28 at 13:38










          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );














          draft saved

          draft discarded
















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55397429%2fun-nesting-a-column-data-from-bigquery%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2
















          Below is for BigQuery Standard SQL



          #standardSQL
          SELECT user_id,
          ARRAY(
          SELECT AS STRUCT ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          FROM UNNEST(ep) ep
          ) ep
          FROM `project.dataset.table_name`


          You can test, play with above using sample data from your question as in below example



          #standardSQL
          WITH `project.dataset.table_name` AS (
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
          STRUCT('origin', STRUCT('auto', NULL)),
          STRUCT('id', STRUCT(NULL, 97))
          ] ep
          )
          SELECT user_id,
          ARRAY(
          SELECT AS STRUCT ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          FROM UNNEST(ep) ep
          ) ep
          FROM `project.dataset.table_name`


          with result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          2 2 origin fcm
          3 3 screen 4
          origin auto
          vid 97


          Another option can be useful in case if you need to group all rows with same user_id



          #standardSQL
          SELECT user_id,
          ARRAY_AGG(STRUCT( ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          )) ep
          FROM `project.dataset.table_name`, UNNEST(ep) ep
          GROUP BY user_id


          like in below example with extra row in sample data



          #standardSQL
          WITH `project.dataset.table_name` AS (
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin2', STRUCT('fcm2', NULL))] ep UNION ALL
          SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
          STRUCT('origin', STRUCT('auto', NULL)),
          STRUCT('id', STRUCT(NULL, 97))
          ] ep
          )
          SELECT user_id,
          ARRAY_AGG(STRUCT( ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          )) ep
          FROM `project.dataset.table_name`, UNNEST(ep) ep
          GROUP BY user_id


          with result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          origin2 fcm2
          2 2 origin fcm
          3 3 screen 4
          origin auto
          id 97


          if you would run first option against same data you would get below result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          2 1 origin2 fcm2
          3 2 origin fcm
          4 3 screen 4
          origin auto
          id 97





          share|improve this answer



























          • thanks you @Mikhail :)

            – nk23
            Mar 28 at 13:38















          2
















          Below is for BigQuery Standard SQL



          #standardSQL
          SELECT user_id,
          ARRAY(
          SELECT AS STRUCT ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          FROM UNNEST(ep) ep
          ) ep
          FROM `project.dataset.table_name`


          You can test, play with above using sample data from your question as in below example



          #standardSQL
          WITH `project.dataset.table_name` AS (
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
          STRUCT('origin', STRUCT('auto', NULL)),
          STRUCT('id', STRUCT(NULL, 97))
          ] ep
          )
          SELECT user_id,
          ARRAY(
          SELECT AS STRUCT ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          FROM UNNEST(ep) ep
          ) ep
          FROM `project.dataset.table_name`


          with result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          2 2 origin fcm
          3 3 screen 4
          origin auto
          vid 97


          Another option can be useful in case if you need to group all rows with same user_id



          #standardSQL
          SELECT user_id,
          ARRAY_AGG(STRUCT( ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          )) ep
          FROM `project.dataset.table_name`, UNNEST(ep) ep
          GROUP BY user_id


          like in below example with extra row in sample data



          #standardSQL
          WITH `project.dataset.table_name` AS (
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin2', STRUCT('fcm2', NULL))] ep UNION ALL
          SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
          STRUCT('origin', STRUCT('auto', NULL)),
          STRUCT('id', STRUCT(NULL, 97))
          ] ep
          )
          SELECT user_id,
          ARRAY_AGG(STRUCT( ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          )) ep
          FROM `project.dataset.table_name`, UNNEST(ep) ep
          GROUP BY user_id


          with result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          origin2 fcm2
          2 2 origin fcm
          3 3 screen 4
          origin auto
          id 97


          if you would run first option against same data you would get below result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          2 1 origin2 fcm2
          3 2 origin fcm
          4 3 screen 4
          origin auto
          id 97





          share|improve this answer



























          • thanks you @Mikhail :)

            – nk23
            Mar 28 at 13:38













          2














          2










          2









          Below is for BigQuery Standard SQL



          #standardSQL
          SELECT user_id,
          ARRAY(
          SELECT AS STRUCT ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          FROM UNNEST(ep) ep
          ) ep
          FROM `project.dataset.table_name`


          You can test, play with above using sample data from your question as in below example



          #standardSQL
          WITH `project.dataset.table_name` AS (
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
          STRUCT('origin', STRUCT('auto', NULL)),
          STRUCT('id', STRUCT(NULL, 97))
          ] ep
          )
          SELECT user_id,
          ARRAY(
          SELECT AS STRUCT ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          FROM UNNEST(ep) ep
          ) ep
          FROM `project.dataset.table_name`


          with result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          2 2 origin fcm
          3 3 screen 4
          origin auto
          vid 97


          Another option can be useful in case if you need to group all rows with same user_id



          #standardSQL
          SELECT user_id,
          ARRAY_AGG(STRUCT( ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          )) ep
          FROM `project.dataset.table_name`, UNNEST(ep) ep
          GROUP BY user_id


          like in below example with extra row in sample data



          #standardSQL
          WITH `project.dataset.table_name` AS (
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin2', STRUCT('fcm2', NULL))] ep UNION ALL
          SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
          STRUCT('origin', STRUCT('auto', NULL)),
          STRUCT('id', STRUCT(NULL, 97))
          ] ep
          )
          SELECT user_id,
          ARRAY_AGG(STRUCT( ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          )) ep
          FROM `project.dataset.table_name`, UNNEST(ep) ep
          GROUP BY user_id


          with result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          origin2 fcm2
          2 2 origin fcm
          3 3 screen 4
          origin auto
          id 97


          if you would run first option against same data you would get below result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          2 1 origin2 fcm2
          3 2 origin fcm
          4 3 screen 4
          origin auto
          id 97





          share|improve this answer















          Below is for BigQuery Standard SQL



          #standardSQL
          SELECT user_id,
          ARRAY(
          SELECT AS STRUCT ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          FROM UNNEST(ep) ep
          ) ep
          FROM `project.dataset.table_name`


          You can test, play with above using sample data from your question as in below example



          #standardSQL
          WITH `project.dataset.table_name` AS (
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
          STRUCT('origin', STRUCT('auto', NULL)),
          STRUCT('id', STRUCT(NULL, 97))
          ] ep
          )
          SELECT user_id,
          ARRAY(
          SELECT AS STRUCT ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          FROM UNNEST(ep) ep
          ) ep
          FROM `project.dataset.table_name`


          with result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          2 2 origin fcm
          3 3 screen 4
          origin auto
          vid 97


          Another option can be useful in case if you need to group all rows with same user_id



          #standardSQL
          SELECT user_id,
          ARRAY_AGG(STRUCT( ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          )) ep
          FROM `project.dataset.table_name`, UNNEST(ep) ep
          GROUP BY user_id


          like in below example with extra row in sample data



          #standardSQL
          WITH `project.dataset.table_name` AS (
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 1 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin2', STRUCT('fcm2', NULL))] ep UNION ALL
          SELECT 2 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('origin', STRUCT('fcm', NULL))] ep UNION ALL
          SELECT 3 user_id, [STRUCT<key STRING, value STRUCT<string_value STRING, int_value INT64>>('screen', STRUCT(NULL, 4)),
          STRUCT('origin', STRUCT('auto', NULL)),
          STRUCT('id', STRUCT(NULL, 97))
          ] ep
          )
          SELECT user_id,
          ARRAY_AGG(STRUCT( ep.key AS key,
          COALESCE(ep.value.string_value, CAST(ep.value.int_value AS STRING)) AS value
          )) ep
          FROM `project.dataset.table_name`, UNNEST(ep) ep
          GROUP BY user_id


          with result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          origin2 fcm2
          2 2 origin fcm
          3 3 screen 4
          origin auto
          id 97


          if you would run first option against same data you would get below result



          Row user_id ep.key ep.value 
          1 1 origin fcm
          2 1 origin2 fcm2
          3 2 origin fcm
          4 3 screen 4
          origin auto
          id 97






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Mar 28 at 12:46

























          answered Mar 28 at 12:34









          Mikhail BerlyantMikhail Berlyant

          73.1k4 gold badges46 silver badges85 bronze badges




          73.1k4 gold badges46 silver badges85 bronze badges















          • thanks you @Mikhail :)

            – nk23
            Mar 28 at 13:38

















          • thanks you @Mikhail :)

            – nk23
            Mar 28 at 13:38
















          thanks you @Mikhail :)

          – nk23
          Mar 28 at 13:38





          thanks you @Mikhail :)

          – nk23
          Mar 28 at 13:38






          Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.







          Got a question that you can’t ask on public Stack Overflow? Learn more about sharing private information with Stack Overflow for Teams.




















          draft saved

          draft discarded















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55397429%2fun-nesting-a-column-data-from-bigquery%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Kamusi Yaliyomo Aina za kamusi | Muundo wa kamusi | Faida za kamusi | Dhima ya picha katika kamusi | Marejeo | Tazama pia | Viungo vya nje | UrambazajiKuhusu kamusiGo-SwahiliWiki-KamusiKamusi ya Kiswahili na Kiingerezakuihariri na kuongeza habari

          SQL error code 1064 with creating Laravel foreign keysForeign key constraints: When to use ON UPDATE and ON DELETEDropping column with foreign key Laravel error: General error: 1025 Error on renameLaravel SQL Can't create tableLaravel Migration foreign key errorLaravel php artisan migrate:refresh giving a syntax errorSQLSTATE[42S01]: Base table or view already exists or Base table or view already exists: 1050 Tableerror in migrating laravel file to xampp serverSyntax error or access violation: 1064:syntax to use near 'unsigned not null, modelName varchar(191) not null, title varchar(191) not nLaravel cannot create new table field in mysqlLaravel 5.7:Last migration creates table but is not registered in the migration table

          은진 송씨 목차 역사 본관 분파 인물 조선 왕실과의 인척 관계 집성촌 항렬자 인구 같이 보기 각주 둘러보기 메뉴은진 송씨세종실록 149권, 지리지 충청도 공주목 은진현